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We study non-equilibrium pair interactions between microscopic particles moving
through a model shear-thinning fluid. Prior efforts to model pair interactions in
non-Newtonian fluids have largely focused on constitutive models derived from
polymer-chain kinetic theories focusing on conformational degrees of freedom, but
neglecting the details of microstructural evolution beyond a single polymer length
scale. To elucidate the role of strong structural distortion in mediating pair interactions
in Brownian suspensions, we formulate and solve a Smoluchowski equation describing
the detailed evolution of the particle configuration between and around a pair of
microscopic probes driven at fixed velocity by an external force through a colloidal
dispersion. To facilitate analysis, we choose a model system of Brownian hard
spheres that do not interact hydrodynamically; while simple, this ‘freely draining’
model permits insight into connections between microstructure and rheology. The
flow induces a non-equilibrium particle density gradient that gives rise to both
viscous drag and an interactive force between the probes. The drag force acts to
slow the centre-of-mass velocity of the pair, while the interactive force arising from
osmotic pressure gradients can lead to attraction or repulsion, as well as deterministic
reorientation of the probes relative to the external force. The degree to which the
microstructure is distorted, and the shape of that distortion, depend on the arrangement
of the probes relative to one another and their orientation to the driving force. It also
depends on the magnitude of probe velocity relative to the Brownian velocity of
the suspension. When only thermal fluctuations set probe velocity, the equilibrium
depletion attraction is recovered. For weak forcing, long-ranged interactions mediated
via the bath-particle flux give rise to entropic forces on the probes. The linear response
is a viscous drag that slows forward motion; only the weakly nonlinear response can
produce relative motion–attraction, repulsion or reorientation of the probes. We derive
entropic coupling tensors, similar in ethos to pair hydrodynamic tensors, to describe
this behaviour. The structural symmetry that permits this analogy is lost when forcing
becomes strong, revealing instabilities in system behaviour. Far from equilibrium, the
interactive force depends explicitly on the initial probe separation, orientation and
strength of forcing; widely spaced probes interact through the distorted microstructure,
whereas the behaviour of closely spaced probes is largely set by excluded-volume
effects. In this regime, a pair of closely spaced probes sedimenting side-by-side tend
to attract and reorient to permit alignment of their line-of-centres with the flow, while
widely spaced probes fall without reorienting. Our results show qualitative agreement

† Email address for correspondence: rzia@stanford.edu

http://orcid.org/0000-0002-2763-9811
mailto:rzia@stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.789&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.789&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.789&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.789&domain=pdf


www.manaraa.com

Non-equilibrium pair interactions in colloidal dispersions 695

with experimental observations and provide a potential connection to the observed
column instability in shear-thinning fluids.

Key words: colloids, non-continuum effects, suspensions

1. Introduction
The study of flow and mechanical instabilities in the sedimentation of particles

through pure and complex fluids is a problem of broad scientific and technological
interest. Such instabilities are diverse in their form and origin, including processes
such as the gravitational collapse of colloidal gels (Poon et al. 1999; Starrs et al.
2002; Padmanabhan & Zia 2017) and vortex formation in Newtonian solvents (Tee
et al. 2002; Bergougnoux et al. 2003). Of particular industrial interest are instabilities
that arise during the sedimentation of particles through shear-thinning fluids, which are
widely utilized in processes for which particle sedimentation is undesirable. Drilling
fluids are a notable example; their high viscosity during slow flow aids in keeping
rock cuttings suspended for extraction, but shear thinning is desirable for reducing
the energy required to remove fluid from a well (Daugan et al. 2004). However,
these beneficial properties are mitigated by a suspension instability of sedimenting
particles; initially well-dispersed suspensions later rearrange and form particle-rich
columns separated by particle-poor fluid regions, leading to enhanced sedimentation
(Allen & Uhlherr 1989; Bobroff & Phillips 1998; Daugan et al. 2004; Mora, Talini &
Allain 2005). Overall, this instability increases the sedimentation rate of the particles,
hindering their removal.

It has been proposed that this ‘column instability’ in shear-thinning fluids
arises from non-equilibrium attractions between sedimenting pairs (Phillips 2010;
Vishnampet & Saintillan 2012), a supposition supported by experimental observations
of particle-pair trajectories in non-Newtonian fluids (Riddle, Narvaez & Bird 1977;
Joseph et al. 1994; Gumulya et al. 2011a,b). While the form of the pair attraction
has been observed to vary with the non-Newtonian rheology of the suspending fluid,
the initial arrangement of the falling pair relative to gravity is seen to influence
the behaviour of particles sedimenting with their line of centres aligned either
along or transverse to the gravitational force. In the former group, particles attract
toward one another (Riddle et al. 1977; Gumulya et al. 2011b). In the latter group,
particles sedimenting side-by-side attract and reorient such that they fall along
their line of centres if they were initially closely spaced, but separate without
reorienting if initially widely spaced (Joseph et al. 1994; Gumulya et al. 2011a).
Phenomenological explanations derived empirically from experiments attribute these
behaviours to features of the non-Newtonian rheology. For example, Joseph et al.
(1994) hypothesize that shear-thinning fluids permit the emergence of localized
reductions in viscosity, ‘corridors’ in which a second nearby particle experiences
lower resistance and thus higher velocity, leading to an effective attraction between
the pair. Seemingly corroborating this idea, Gheissary & Van den Brule (1996)
reported that no pair attractions arise between a pair of particles sedimenting through
a Boger fluid. Gumulya et al. (2011a) provide still another explanation, attributing
pair attraction in shear-thinning fluids to the emergence of normal stress differences.
Overall, while there has been some success in explaining these interactions from a
phenomenological perspective, their ultimate origin remains unclear.
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Theoretical study of the interactions between pairs of particles sedimenting through
complex fluids have primarily focused on continuum constitutive models. For example,
Brunn (1977) and later Phillips & Talini (2007) utilized the second-order fluid
model to show that a pair of identical spheres will attract and reorient until they
fall as a doublet with their axis parallel to gravity, in qualitative agreement with
experimental results for closely spaced pairs (Joseph et al. 1994; Gumulya et al.
2011a). Despite this apparent success, the second-order fluid model is limited to the
near-equilibrium regime by its assumption of constant viscosity. It also precludes
the study of non-continuum behaviour such as depletion flocculation (Asakura &
Oosawa 1954) and structure-induced stabilization (Chu, Nikolov & Wasan 1996; Xu,
Nikolov & Wasan 1997), owing to its assumption that the fluid interacts with the
pair as a continuum. While there have been attempts to relax the near-equilibrium
restriction through the use of alternative nonlinear continuum constitutive models
(Feng, Huang & Joseph 1996; Yu, Wachs & Peysson 2006; Goyal & Derksen 2012),
these studies have been limited in scope, e.g. focusing on sedimentation in channels.
None have interrogated the role of non-equilibrium, non-continuum interactions and
corresponding phenomena.

The primary focus of this investigation is to interrogate the microstructurally
mediated pair-level forces between two microscopic probe particles driven at fixed
velocity through a suspension of freely draining colloids. This simple model system is
inspired by the single-particle active microrheology framework, which has successfully
captured a wide range of non-Newtonian flow behaviours, including shear thinning
and thickening (Brady & Vicic 1995; Bergenholtz, Brady & Vicic 2002; Squires &
Brady 2005; Khair & Brady 2006; Meyer et al. 2006; Sriram, Meyer & Furst 2010),
normal stress differences (Brady & Vicic 1995; Bergenholtz et al. 2002; Zia & Brady
2012; Chu & Zia 2016) and time-dependent behaviour (Khair & Brady 2005; Zia &
Brady 2013; Swan, Zia & Brady 2014; Mohanty & Zia 2017). These non-continuum
behaviours are explained at the two-body level, where a single particle interacts with
the surrounding microstructure. For weak flow, dynamics are set by a balance of
interparticle and Brownian forces, and the microstructure is Boltzmann distributed.
This balance is upset when a flow is imposed, giving rise to hydrodynamic drag on
the particles and distortion of the microstructure from its equilibrium configuration.
At the two-body level, this non-equilibrium deformation depends only on the strength
of the imposed flow and of the microscopic forces acting on the particles. In this
simple model, hydrodynamic interactions are neglected entirely, an idealized limit
that nonetheless finds application in freely draining suspensions where particles are
hydrodynamically dilute, e.g. kept far apart by repulsive forces such as electrostatic
interactions.

A pair interacting with a bath is at least a three-body problem, but has been
treated analytically when the surrounding body is structureless and isotropic, via
equilibrium statistical mechanics. The most notable result from this approach is
the depletion force modelled by Asakura & Oosawa (1954). Closely spaced probes
exclude bath particles from the space between them, and the resulting osmotic
pressure gradients give rise to an attractive force between the probes. When
a deterministic force stronger than thermal fluctuations acts on the probes, the
intervening and surrounding microstructure is distorted by flow, resulting in qualitative
and quantitative changes in the microstructurally mediated forces experienced by the
probes (Dzubiella, Löwen & Likos 2003; Carpen 2005; Khair & Brady 2007; Krüger
& Rauscher 2007; Zia 2011).
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Pair interactions away from equilibrium have been previously studied via Brownian
dynamics simulation (Carpen 2005; Zia 2011), lattice gas simulations (Mejía-
Monasterio & Oshanin 2011) and confocal microscopy experiments (Sriram & Furst
2012, 2015). Prior theoretical interrogations of such non-equilibrium interactions
have been more limited in scope. For example, Dzubiella et al. (2003) examined
non-equilibrium depletion interactions between soft colloids moving at arbitrary
orientations, but their theoretical approach relied on the dynamic superposition
approximation, whereby the microstructural deformation about the two probes is
obtained by simply superimposing two independent structures generated by a single
driven probe. This restriction limits the framework to slowly moving, widely spaced
probes, precluding the study of strong departures from equilibrium, or close initial
spacings. To the extent that such models might provide a connection to the column
instability in polymeric shear-thinning fluids, such a restriction is severe. To overcome
these limitations, Krüger & Rauscher (2007) employed an approach in which the
disturbance field is expanded in spherical harmonics, a method that proves to be
numerically intractable when probe forcing is strong or probe separation is small. An
alternative approach utilized by Khair & Brady (2007), based on transformation of
the Smoluchowski equation governing microstructural distortion into the Helmholtz
equation, extended the framework to moderate forcing strength and arbitrary separation
distances. While these two methods relax some of the restrictions of the dynamic
superposition approximation, they are limited to probes travelling along (Khair &
Brady 2007; Krüger & Rauscher 2007) or transverse (Krüger & Rauscher 2007) to
their line of centres. This precludes the study of angular variations in structure arising
from altering probe orientation with respect to the flow, preventing the study of the
forces that cause probes to reorient and produce unstable structures in suspensions.

We have developed a theoretical framework that overcomes these limitations,
allowing solution of the Smoluchowski equation for arbitrary probe velocities, probe
orientations with respect to their velocities and probe separations. In the weakly
nonlinear regime, we find that structural symmetries allow relation of the forces
exerted on the probes to probe velocity through a set of coupling tensors similar
to those of Stokes flow. When forcing strength is increased, this symmetry is lost,
and new behaviours are observed. In particular, we find that our model qualitatively
predicts experimentally observed instabilities in particle trajectories: closely spaced
particles sedimenting side-by-side will attract and reorient such that they fall along
their line of centres, while widely separated particles fall without reorienting.

The remainder of this work is organized as follows. In § 2, the model system is
presented. We derive in § 3 expressions for the force the suspension exerts on the
probes, and the Smoluchowski equation governing the microstructural evolution of the
bath particles. Results for the non-equilibrium microstructure and the resultant forces
exerted on the probes are presented in § 4. Concluding remarks are presented in § 5.

2. Model system

We consider N − 2 neutrally buoyant colloidal hard spheres of hydrodynamic
radius bh suspended in a solvent of viscosity η and density ρ, through which a pair
of colloidal probes of hydrodynamic radius ah are driven at fixed velocity U. All
bath particles are free of external forces and torques. The importance of fluid inertia
relative to viscous stresses, set by the Reynolds number, Re = ρUa/η, is negligible
owing to the small size of the particles. Fluid flow is thus governed by the Stokes
equations, and particle motion is set by their solution and the detailed microscopic
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FIGURE 1. Three-body model system: two probes, I and II, interact with a bath particle.

forces between the particles. This model system is illustrated in figure 1, where two
probes, labelled I and II are separated by distance d, and interact with a bath particle
at position r relative to probe I.

Probe translation through the bath distorts the suspension and, simultaneously,
their interactions with the deformed microstructure tend to alter probe motion. The
degree to which the structure is distorted is set by the strength of the advective
flow U relative to the speed of diffusion Db/` that tends to restore the equilibrium
microstructure, and defines a Péclet number, Pe=U`/Db. Here, ` is the characteristic
length scale of distortion, Db = kT/6πηbh is the diffusivity of an isolated bath
particle, k is Boltzmann’s constant and T is the absolute temperature. Because
probe velocity is prescribed to remain fixed, the encounters between probes and
bath particles that would tend to change probe motion or orientation must be
counteracted by the externally applied force. That is, the interplay between probe
motion and the resulting changes in hydrodynamic and entropic forces exerted on
the particles induces a suspension-mediated, effective force on the pair. Because
the effective suspension-mediated force is set by particle interactions and the
degree of microstructural distortion, its determination requires, firstly, formulation
of the configuration-dependent entropic and hydrodynamic forces and, secondly,
a statistical-mechanics model connecting the microstructural configuration and the
average effective force. We address the configuration-dependent forces next, and the
suspension-mediated forces in § 3.

2.1. Microscopic forces: interparticle repulsion and hydrodynamic interactions
The strength of hydrodynamic interactions between hard spheres can be set by tuning
the range of interparticle repulsion. As repulsive interactions become long-ranged,
hydrodynamic entrainment and Brownian drift weaken while flux due to hard-sphere
collisions grows stronger. The excluded-annulus model (Russel 1984) provides
a convenient framework for systematically tuning the strength of hydrodynamic
interactions by introducing a minimum approach distance r = rmin between the probe
and bath particles. This minimum approach distance is enforced by an interparticle
potential

V(r)=
{

0, r > rmin,

∞, r< rmin.
(2.1)



www.manaraa.com

Non-equilibrium pair interactions in colloidal dispersions 699

Bath-particle centres are thus excluded from a spherical volume defined by rmin
centred about each probe. Physically, such excluded volume interactions can arise
from hard-sphere repulsion, as well as particle and solvent conditions that extend the
effective size of the probe and bath particles to the thermodynamic radii a and b
(cf. figure 1). These physical mechanisms include surface roughness, grafted polymer
hairs or ionic screening layers employed to sterically stabilize a suspension, for
example. The range over which the minimum approach distance rmin = a+ b extends
beyond the hydrodynamic size dictates the strength of hydrodynamic interactions. To
this end, it is convenient to define two excluded-annulus parameters

κa = (a− ah)/ah, κb = (b− bh)/bh, (2.2a,b)

describing the strength of entrainment. When κa, κb → 0, the hydrodynamic no-slip
surfaces of the probes and bath particles may approach near enough to experience
lubrication interactions. When κa, κb ∼ O(1), particles experience long-range
hydrodynamic interactions. Finally, when κa, κb → ∞, the no-slip surfaces always
remain widely separated, and hydrodynamic entrainment is negligible. This represents
an idealized limit; a finite value of κa, κb is required to transfer momentum between
the particles via the fluid. While the freely draining approximation may seem severe,
it nonetheless affords a useful approximation for behaviour of shear-thinning fluids,
where, e.g. suspension viscosity changes little for κa, κb ' 2 (Bergenholtz et al. 2002;
Khair & Brady 2006; Brady, Khair & Swaroop 2006; Swaroop & Brady 2007).

3. Theoretical framework
A pair of colloids immersed in a continuum solvent undergo Brownian diffusion

and, in the presence of hydrodynamic interactions, also experience Brownian drift,
a deterministic force that acts to drive the pair apart. Addition of particles to the
system weakens both of these effects, but can introduce a new entropic force, as the
many-body microscopic forces between the particles produce an effective force on
the interacting pair. When these new particles are a smaller ‘depletant’ species, this
deterministic force will drive the pair together. Thus, maintaining a fixed separation
between a pair of colloids (either in a solvent or in a suspension) requires application
of a deterministic force. The strength and direction of the required force depends on
the degree to which the microstructure of the intervening medium deviates from its
equilibrium configuration. This required effective force can be computed as an average
over all permissible configurations of the particles; the average external force is equal
in magnitude and acts opposite in direction to the suspension-mediated force exerted
on the probes by the bath particles. At equilibrium, theoretical expressions for the
depletion force arising in the presence of depletant particles are well known (Asakura
& Oosawa 1954). The focus of the present study is to develop a theoretical model for
the effective force acting on a pair of probe particles immersed in a suspension that
is driven far from equilibrium by the externally driven motion of the probes, and to
relate these results to the stability of the configurations of sedimenting pairs. In the
present section, we develop the theoretical framework for computing this average force
between a pair of colloidal probes driven at fixed velocity through a bath of colloids
of arbitrary relative size. We begin with a brief review of the well-known case in
which probe velocity is strictly thermal in origin and the average suspension-mediated
force is given by the theory of Asakura & Oosawa (1954). Following this, we develop
the corresponding framework for arbitrary strength of external forcing relative to the
Brownian force of the background particles.
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FIGURE 2. Schematic of the equilibrium depletion interaction.

3.1. Suspension-mediated force at equilibrium: depletion attractions
We consider two microscopic probes immersed in a suspension of bath particles.
At thermodynamic equilibrium, the arrangement of bath particles is given by the
Boltzmann distribution ρ= nb exp(−V/kT), where ρ is the correlation function giving
the probability of finding a bath particle in a differential volume dr, nb is the bulk
number density of the bath particles far from the probes and V(r) is the interaction
potential between a bath particle located at r and each probe. If the probes are widely
separated, the bath-particle distribution is isotropic about each probe. However, as the
probes near one another, the structure around them changes. If the probes approach
closely enough, bath particles are excluded from the gap between them (cf. figure 2),
reducing the configurational entropy of the suspension. To alleviate this entropic
restriction, the probes move toward one another, closing the intervening gap and
increasing the volume available to the bath particles. The entropic driving force that
pushes the colloids together can also be viewed as an attractive force between the
pair that scales with the thermal energy kT of the bath. The depletion force, initially
described by Asakura & Oosawa (1954) for two colloids diffusing in a suspension
of macromolecules of much smaller size, acting on probe I in our model system, is
given by

FAO
1

nbkT(a+ b)2
=

0, d/2 > a(1+∆),
π

4
(4− d2/(a+ b)2) d̂, a 6 d/2< a(1+∆),

(3.1)

where nb is the bulk number density of the bath particles, d is the separation between
the probes, ∆ = b/a is the characteristic attraction length and d̂ is the unit vector
pointing from probe I to the second probe. The depletion force acts with equal
magnitude and opposite direction on each probe, FAO

1 =−FAO
2 . When d < 2a(1+∆),

bath particles are excluded from the gap between the probes, and the probes attract.
For d > 2a(1+∆), bath particles move freely between the probes and the depletion
force vanishes.

This bath particle-mediated force between the probes can also be described
mechanically as a manifestation of a non-uniform osmotic pressure. The probes
suffer many collisions with bath particles, giving rise to a particle osmotic pressure.
When bath particles are excluded from the gap between the probes, the osmotic
pressure is zero in this region, but non-zero on all other portions of their surfaces.
This imbalance in osmotic pressure then drives the pair together until they reach
mechanical equilibrium at contact.
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More generally, any anisotropy in bath-particle configuration, such as that resulting
from flow or external fields, can be expected to induce bath-particle-mediated forces
on the probes, where the many-body microscopic forces that ultimately set the
effective force are influenced by the imposed flow. The determination of such forces
is addressed in the next section.

3.2. Suspension-mediated forces away from equilibrium: two translating probes
Here we consider the motion of a pair of probe particles driven by an external force
at fixed velocity U through the suspension. Probe motion sets bath particles and fluid
into motion, distorting the particle microstructure. In turn, the bath particles resist
probe motion via hydrodynamic entertainment, interparticle potentials and Brownian
forces. Each of these forces are configuration dependent and, in consequence,
the forces exerted on the probes fluctuate as all permissible arrangements of the
surrounding microstructure are sampled. Thus, the force required to maintain the
prescribed velocity is an average over all such configurations. It is appropriate to
view this average as a suspension-mediated force acting on and between the probes.
In § 3.2.1 we develop expressions governing the evolving microstructure, and in
§ 3.2.2, we develop the theoretical framework describing the suspension-mediated
force that must be counteracted to maintain fixed probe velocity.

3.2.1. Microstructural evolution
The evolution of the N-particle probability density function PN(x1, x2, . . . , xN, t),

which gives the probability of finding particle i at position xi, is governed by
conservation of probability, the N-body Smoluchowski equation:

∂PN

∂t
+

N∑
i=1

∇i · ji = 0, (3.2)

where ji=UiPN is the probability density flux of particle i. In the Stokes flow regime,
the velocity of particle i is linear in the forces exerted on each particle, and arises
from the external force on probe j, Fext

j , as well as Brownian and interparticle forces:

Ui =

2∑
j=1

M ij ·Fext
j −

N∑
j=1

M ij · (∇jV + kT∇j ln PN), (3.3)

where M ij is the N-body hydrodynamic mobility tensor that depends on particle
positions {x1, x2, . . . xN} and V is an N-body interparticle potential. For the probes,
i ∈ [1, 2], and for the bath particles, i ∈ [3,N].

To study effective pair-level entropic interactions between the probes, we focus our
attention on the limit κa, κb →∞, where the effects of hydrodynamic interactions
can be neglected and interactions are strictly entropic in origin. In this limit,
the hydrodynamic mobility tensors M ij are given by the isolated particle value,
M11 =M22 = I/6πηah for the probes and M = I/6πηbh for the bath particles, where I
is the identity tensor, and the particle velocity takes the form

Ui =MaFext
i −Ma∇iV −Da∇iPN(x1, x2, . . . xN), i ∈ [1, 2] (3.4)

for the probes

Ui =−Mb∇iV −Db∇i ln PN(x1, x2, . . . xN), i ∈ [3,N], (3.5)
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where Da = kTMa = kT/6πηbh and Db = kTMb = kT/6πηbh are the Stokes–Einstein
diffusivities of a probe and a bath particle, respectively. To ensure that probe velocities
remain fixed at U1=U2=U, an external force must be applied to each probe, which
is found by solving the probe velocity (3.4) for Fext

i :

Fext
i = 6πηahU+∇iV + kT∇i ln PN . (3.6)

The external force exerted on each probe drives the microstructure out of
equilibrium, which is an N-body problem, with two probes interacting with N − 2
bath particles. To make analytical progress, we focus on the semi-dilute limit, where
the N-body Smoluchowski equation for PN (3.2) reduces to an effective two-body
equation for the conditional pair distribution function g(r | d) (cf. appendix A):

U · ∇rg+Db∇
2
r g= 0, (3.7)

where r = x3 − x1 is the position of a bath particle relative to the first probe and
d= x2− x1 denotes probe separation. The particles are hard, and thus the interparticle
potential demands no relative flux at contact:

ni · (∇rg+Ug)= 0 on Si, (3.8)

which naturally accounts for the non-continuum nature of colloidal dispersions by
rendering the excluded volume bounded by Si inaccessible to bath particles; it is
accounting for this excluded volume which gives rise to the depletion force at
equilibrium. The suspension is undisturbed far from the probes:

g→ 1 as r→∞. (3.9)

The governing equations and boundary conditions can be expressed in dimensionless
form as

∇
2g+ PeÛ · ∇g = 0, (3.10a)

ni · (∇g+ PeÛg) = 0 on Si, (3.10b)
g → 1 as r→∞, (3.10c)

where quantities have been made dimensionless as

r∼ a+ b, d∼ a+ b, Û=U/U, (3.11a−c)

and a dimensionless velocity Pe = U(a + b)/Db, emerges from the scalings as the
strength of advection relative to Brownian diffusion. Hereafter, r∗ and d∗ will be
used to denote dimensional particle positions when the notation would otherwise be
ambiguous. With these scalings, the excluded-volume surface Si has a dimensionless
radius of unity. When b/a→ 0, our model does not reduce to the continuum treatment
of probes interacting through a structureless fluid of some effective viscosity and
density; the latter can produce no relative force between spherical, same-size, equal
velocity probes. This large probe, non-continuum limit is of physical interest, as
it can be used to model the motion of spherical probes through polymer solutions
(Krüger & Rauscher 2009). Inclusion of hydrodynamic interactions in our model
could recover the continuum limit, provided the probe is smooth.



www.manaraa.com

Non-equilibrium pair interactions in colloidal dispersions 703

3.2.2. Non-equilibrium suspension-mediated force
In § 3.2.1, it was found that a configuration-dependent force (3.6) is needed to

maintain constant probe velocity. As the probes translate, they will encounter all
permissible configurations of bath particles and, on average, will experience an
effective, suspension-mediated force, 〈Feff

i 〉, from interaction with the microstructure.
This effective force is equal in magnitude and opposite in direction to the average of
the configuration-dependent external force required to maintain probe motion:

〈Feff
i 〉 =−〈F

ext
i 〉 =−

∫
Fext

i PN(x1, x2, . . . , xN) dx1 dx2 . . . dxN . (3.12)

Analysis is facilitated by adopting a coordinate system relative to probe i, where zi=xi
is the absolute position of probe i, ri = xj − xi gives the position of bath particle j
relative to probe i and di = x3−i − xi gives the probe separation. Substitution of (3.6)
into (3.12) then gives

〈Feff
i 〉 =−6πηahU+ nb

∫
r>0

kT∇rig(ri | di) dri + nb

∫
r>0

g(ri | di)∇riV dri (3.13)

after integration over the positions of all but one bath particle (cf. appendix B). Here,
g(ri | di) is the conditional pair distribution function of a bath particle interacting
with two probes at fixed separation di, and is the ri is the position of any of the
bath particles relative to the probes. Because the bath particles are mono-disperse and
interact via the same potentials, each bath particle is statistically identical, and may
be interchanged with any other bath particle without loss of generality.

The first term on the right-hand side of (3.13) is the Stokes drag acting on each
probe as if it were alone in the solvent. The remaining terms give the effect of
the bath particles on probe behaviour. The second term is the average entropic
force arising from Brownian motion that tends to make the bath-particle distribution
homogeneous, and becomes a surface integral via the divergence theorem that vanishes
because the far-field structure is undisturbed. The third term is the interparticle force
arising from hard-sphere collisions, and is set by thermal forces that separate a
contacting pair, acts outwards along the line of centres of a pair, and is infinitely
strong at contact owing to entropic exclusion:

∇riV =−nikTδ(r− (a+ b)). (3.14)

Here, ni is the outward-facing unit normal of the excluded volume surface Si and δ(x)
is the Dirac delta function. Substituting this expression into (3.13) gives

〈Feff
i 〉 =−6πηahU− nbkT

∫
nig(ri | di; α, Pe) dSi. (3.15)

This is an N-particle force, where N− 2 particles (the bath particles) are indistinguish-
able. In writing (3.15), we have emphasized that the force exerted on the probes
depends conditionally on probe separation, and depends parametrically on probe
orientation and Pe. Here, α is the orientation angle characterizing the direction of
travel of the probes (cf. figure 3). This angle falls between two values α ∈ [0, π/2].
When α = 0, the probes travel along their line of centres, the ‘tandem’ orientation,
while for α = π/2 the probes travel perpendicular to their line of centres, the
‘side-by-side’ orientation.
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FIGURE 3. Coordinate system, with y pointing out of the page. Black circles indicate
probes of radius a, solid black line indicates excluded-volume surface of radius a + b.
Probe I is located at (0, 0, −d/2), probe II is located at (0, 0, d/2) and their excluded
volume surfaces are labelled by SI and SII, respectively. Probe velocity is expressed in
terms of the unit vectors ex and ez as U=U sin αex +U cos αez.

The integral term in (3.15) is the configurational average of the interparticle
force. At equilibrium, this force is simply the depletion force. To examine the
non-equilibrium entropic force exerted on each of the two probes by the bath particles,
it is convenient to write the microstructure as a sum of its equilibrium value plus a
flow-induced perturbation:

g(r | d; α, Pe)= geq(r | d)(1+ Pe f (ri | di; α, Pe)). (3.16)

The equilibrium microstructure geq
= exp(−V/kT) is unity everywhere except in the

excluded-volume region, where it is identically zero, and f (ri | di;α,Pe) represents the
distortion of the equilibrium microstructure. The suspension-mediated, entropic force
then becomes

〈Feff
i 〉 =−6πηahU− nbkT

∫
ni dSi − Pe nbkT

∫
nif (ri | di; α, Pe) dSi. (3.17)

The first integral gives the equilibrium depletion force (3.1) exactly. The second
integral gives the non-equilibrium contribution to the osmotic force,

〈Feff ,neq
i 〉 ≡−Pe nbkT

∫
nif (ri | di; α, Pe) dSi. (3.18)

In the limit of widely separated probes (d = |di| →∞), this expression recovers the
particle drag on a sphere in single-probe active microrheology in the dilute limit
(Squires & Brady 2005). In this limit, the osmotic force is directed solely along the
line of forcing, and may be used to define a microviscosity via Stokes drag law
(Squires & Brady 2005)

ηmicro
U =−

Fdrag
0 · Û

6πahU
, (3.19)

where Û=U/|U| and
Fdrag

0 = lim
d→∞
〈Feff ,neq

i 〉 (3.20)

is the particle drag force acting on a single probe. For widely separated probes,
the average osmotic force is completely described by a single scalar quantity, ηmicro

U ,
depending only on the value of Pe, and is independent of probe separation and
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direction of travel. It acts solely to reduce the mean speed of the probes. However,
when the probes are near one another, microstructural distortions caused by one
probe may influence the bath-particle distribution about the second probe. The
non-equilibrium forces thus depend on probe separation d and the strength of forcing
Pe, as well as their direction of travel with respect to their line of centres, which is
characterized by an orientation angle α.

In contrast to widely separated probes, where the non-equilibrium force acts only to
reduce the mean speed of the probes, the dual-probe non-equilibrium force may also
include an interactive force, a non-equilibrium analogue to the Asakura & Oosawa
(1954) depletion attraction, that may act to change the separation (or orientation) of
the probes, as well as the drag force:

〈Feff ,neq
1 〉 =Fint

+Fdrag, 〈Feff ,neq
2 〉 =−Fint

+Fdrag. (3.21a,b)

The first component, the interactive force, is defined as the force that acts to change
the relative velocity between the probes:

Fint
=
〈Feff ,neq

1 〉 − 〈Feff ,neq
2 〉

2
. (3.22)

The interactive force acts with equal magnitude but opposite direction on each probe,
and must be counteracted by an externally applied force to maintain the imposed
probe separation and orientation. That is, it acts to change the relative velocity of
the probes without influencing their average (centre-of-mass) velocity. Projection along
and perpendicular to the line of centres between the probes gives

Fint
= Fint

‖
ez + Fint

⊥
ex, (3.23)

where Fint
‖

is the magnitude of the component of the interactive force directed
along the probes’ line of centres, and Fint

⊥
is the magnitude of the force directed

perpendicular to the probes’ line of centres. The physical interpretations of these
components are illustrated in figure 4. The parallel component, Fint

‖
, tends to drive

the probes together or apart. When it is positive (negative), the probes attract (repel)
one another. The perpendicular force Fint

⊥
tends to reorient the probes relative to the

imposed motion: either towards the tandem orientation, where the probes travel along
their line of centres (α= 0), or the side-by-side orientation (α=π/2), where motion
is transverse to their line of centres. When Fint

⊥
> 0, the probes seek the side-by-side

orientation; when Fint
⊥
< 0, the interactive force tends to realign the probes toward the

tandem orientation. Whether the initial probe configuration (α, d) is stable depends
on the response of Fint

‖
and Fint

⊥
to small perturbations in α or d, which will be

examined in § 4.
The second component, the drag force, is the average of the centre-of-mass drag on

each probe:

Fdrag
=
〈Feff ,neq

1 〉 + 〈Feff ,neq
2 〉

2
. (3.24)

The drag force is the same on both probes, Fdrag
1 = Fdrag

2 = Fdrag, and must be
counteracted by an externally applied force to maintain a constant centre-of-mass
velocity. The magnitude of the drag force can be compared to the microstructural drag
on a single probe travelling at fixed velocity through a suspension (Squires & Brady
2005; Swan & Zia 2013), given in (3.19) as 6πηmicro

U ahU. If |Fdrag
|> 6πηmicro

U ahU, each
probe encounters greater drag than were it travelling alone through the suspension.
Conversely, if |Fdrag

|< 6πηmicro
U ahU, bath-mediated interaction can actually reduce the

drag on each probe below the single-probe drag.
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U

U
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Attraction Repulsion To side-by-side To tandem

FIGURE 4. Schematic of the interactive force, Fint
=Fint

‖
ez+Fint

⊥
ex. The attractive/repulsive

parallel interactive force Fint
‖

is shown in (a,b), and the reorientation force, the
perpendicular interactive force Fint

⊥
is shown in (c,d).

4. Results
Here we present results for the drag and interactive forces and the underlying

microstructural evolution. We begin with the linear-response regime for weak probe
motion in § 4.1, followed by strong external forcing in § 4.2. In each section, the
governing equations for the microstructure are solved first and then are utilized to
compute the effective force.

4.1. Asymptotically weak forcing
When Brownian motion is strong relative to advection, the microstructure is only
weakly perturbed by probe motion, making it is natural to expand the microstructure
in small Pe:

g(r | d; α, Pe)= 1+ Pe f1(r | d; α)+ Pe2 f2(r | d; α)+O(Pe3), (4.1)

where each correction f1, f2, . . . to the equilibrium microstructure depends conditionally
on probe separation d with orientation α as a parameter. The O(Pe) microstructural
distortion function f1 satisfies Laplace’s equation:

∇
2f1 = 0, (4.2a)

ni · (∇f1 + Û) = 0 on Si, (4.2b)
f1 → 0 as r→∞. (4.2c)

Because solutions of Laplace’s equation are linear in the boundary data, f1 ∼ Û. The
weakly nonlinear correction, f2, is governed by Poisson’s equation:

∇
2f2 + Û · ∇f1 = 0, (4.3a)

ni · (∇f2 + Ûf1) = 0 on Si, (4.3b)
f2 → 0 as r→∞. (4.3c)

Because f1 is linear in probe velocity, both the non-homogeneous term in (4.3a) and
the no-flux boundary condition (4.3b) are quadratic in U and, in consequence, f2 ∼

ÛÛ. Recalling from (3.17) that the scaling of the effective force is set by the non-
equilibrium microstructure, the linear and weakly nonlinear contributions to the forces
on each probe, 〈Feff

1 〉 and 〈Feff
2 〉, scale as U and UU.
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The microstructural deformation f can be inserted into (3.18) via (4.1) to obtain the
effective force, where the linear and quadratic scalings of the structural deformation
in velocity lead to a compact and revealing form:

〈Feff ,neq
1 〉

2πnbkT(a+ b)2/3
=−Pe(R̂11 + R̂12) · Û+ Pe2T̂ 1 : ÛÛ, (4.4)

for the force exerted on probe I and

〈Feff ,neq
2 〉

2πnbkT(a+ b)2/3
=−Pe(R̂22 + R̂21) · Û+ Pe2T̂ 2 : ÛÛ (4.5)

for probe II, where the effective force is made dimensionless on the ideal osmotic
force, 2πnbkT(a + b)2/3. We have defined the resistance tensors R̂ij, which couple
the drag force exerted on probe i to the motion of probe j, and T̂ i, which couple
the interactive force exerted on probe i to weakly nonlinear motion. (In general, the
weakly nonlinear force on probe i would be coupled to the three velocity dyadics of
the form UjUk through the third-rank tensors T ijk, where ( j, k)= [(1, 1), (1, 2), (2, 2)].
Here, U1 = U2 = U, meaning the force may be described by a single resistance
tensor.) The subscript i, j = 1 denotes probe I, and the subscript i, j = 2 denotes
probe II. The resistance tensors R̂ij are not hydrodynamic resistance tensors; rather,
they are strictly entropic in origin. The symbol R̂ij was chosen because these tensors
give the configuration-dependent resistance to probe motion arising from the distorted
microstructure. For same-sized probes, the force exerted on a probe must be invariant
under exchange of particle positions and labels, i.e. 〈Feff ,neq

1 〉(d)= 〈Feff ,neq
2 〉(−d), giving

the symmetry relations R̂11 = R̂22, R̂12 = R̂21, and T̂ 1 =−T̂ 2. Thus, we will focus the
remaining analysis on the force exerted on probe I.

The osmotic scaling of (4.4) emphasizes the physical origin of the resistance
tensor, a flow-induced gradient in the osmotic pressure, and can be related to a
viscous scaling set by the drag force of the bath particles in the infinite separation
limit, d→∞:

〈Feff ,neq
i 〉 =−

2π

3
nbkT(a+ b)2Pe Û=−6πηmicro

U,0 ahU, d→∞, (4.6)

where

ηmicro
U,0 = ηφb

(1+ λ)3

2λ2

κa + 1
κb + 1

(4.7)

is the linear-response, constant-velocity microviscosity, recovering the results of
Squires & Brady (2005), Hoh (2013) and Swan & Zia (2013) in the infinite separation
limit. Here, λ= b/a is the bath particle-to-probe size ratio. (For small bath particles,
ηmicro

U,0 ∼O(φb/λ
2), which diverges as λ→ 0, but this is easily resolved by noting that

the condition of diluteness requires that the probes interact with only a single bath
particle at a time, which requires φb/λ

2
� 1 (Zia & Brady 2010).) Comparison of

(4.4) and (4.6) gives R̂11 = I as d→∞, and gives the total force exerted on probe I,
scaled on Stokes drag, 6πηahU, as:

〈Feff
1 〉

6πηahU
=

FAO
1

6πηahU
− Û−

ηmicro
U,0

η
(R̂11 + R̂12) · Û+ Pe

ηmicro
U,0

η
T̂ 1 : ÛÛ, (4.8)

after insertion of (4.4) into (3.17).
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Near to equilibrium, the structure of a dilute dispersion is isotropic and its
rheology Newtonian. It is as though the probes move through an isotropic continuum,
inspiring us to seek forms of R̂11 and R̂12 analogous the resistance tensors of low-Re
hydrodynamics (Brenner 1964). In an isotropic Newtonian fluid, the hydrodynamic
resistance tensors coupling the motion a pair of spheres can be constructed from
the unit vector d̂ and the isotropic unit tensor I . Motion of either particle along or
transverse to their line of centres can be obtained by projecting R̂11 and R̂12 through
the orthogonal bases formed from d̂d̂ and I:

R̂ij = R‖ij(d) d̂d̂+ R⊥ij (d)(I − d̂d̂). (4.9)

Here, d̂d̂ propagates the longitudinal component of probe velocity to the force, and
I − d̂d̂ propagates the transverse component. The probes are coupled entropically,
where the motion of one distorts the suspension, producing a disturbance flux of
bath particles that affects the motion of the second probe. The ‘self’ couplings
R‖11 and R⊥11 give the force required to maintain the velocity U1 of probe I in the
presence of probe II, where the fixed velocity of probe II resists the deformation
of the bath needed for probe I to move. The ‘pair’ couplings R‖12 and R⊥12 give the
force required to keep the velocity U1 from being changed by disturbance flux of bath
particles created by the fixed motion of probe II. The collective resistance components
R‖=R‖11+R‖12 and R⊥=R⊥11+R⊥12 give the force required to keep both probes moving
through the bath in the presence of one another, i.e. the total translational drag. When
the collective resistance is greater than unity, each probe experiences an increase in
drag relative to that exerted by the suspension on a single probe, while values smaller
than unity correspond to decreased resistance. The symmetry of the linear resistance
tensors permits no relative force between two equal-velocity probes, in a manner
analogous to the reversible interactions of Stokes flow.

In contrast, we find that forces that tend to produce relative motion between the
probes do emerge from the weakly nonlinear coupling T̂ 1. Projection of T̂ 1 through
the orthogonal bases formed by d̂d̂d̂, d̂I , and I d̂ gives

T̂ 1 = T‖(d) d̂d̂d̂+ T⊥(d) d̂(I − d̂d̂)+ T×(d)2(I − d̂d̂) d̂. (4.10)

Because T̂ 1 = −T̂ 2, this coupling gives rise to a force that acts equal in magnitude
and opposite in direction on each probe, the interactive force (cf. (3.22), § 3.2.2).
The orthogonal projections in (4.10) propagate probe motion to components of the
interactive force; the scalar functions T‖ and T⊥ transform probe motion in any
direction into attractive or repulsive forces that tend to drive the probes together or
apart. When these couplings are both positive, the probes attract one another, but
repel each other when T‖, T⊥ < 0. If the two have opposite signs, probe orientation
α determines whether the probes will attract or repel:

Fint
‖
/Pe2

nbkT(a+ b)2
=

2π

3
(T‖ cos2 α + T⊥ sin2 α). (4.11)

The third coupling, T×, gives the tendency for a pair of probes to reorient in response
to the flow (cf. figure 4):

Fint
⊥
/Pe2

nbkT(a+ b)2
=

2π

3
T× sin 2α. (4.12)
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The coupling tensors R̂11, R̂12 and T̂ 1 are configuration dependent, and thus
require determination of the microstructural disturbance functions f1 and f2. The
methods for obtaining the three tensors depend on probe separation; for d > 2, we
obtain analytical expressions via a twin-multipole expansion of the microstructure, as
presented in appendices C and D. For d< 2, overlap of the excluded-volume surfaces
of the probes demands numerical solution of the equations governing the structure
utilising the finite difference method presented in appendix E.

4.1.1. Microstructure: linear and weakly nonlinear response
The linear response and weakly nonlinear microstructural distortions were computed

in the present study utilizing two methods: analytically via a twin-multipole expansion
for probe separations d> 2, and numerically via finite difference methods for arbitrary
probe separations, as shown in appendices C–E. We begin with a discussion of the
analytical results for the weakly nonlinear microstructure, followed by a comparison
to our numerical results.

For separations d > 2, the O(Pe) microstructural disturbance f1 may be written
as a twin-multipole expansion (cf. appendix C), comprising of an infinite series of
multipole moments centred at probe I and a second expansion centred at probe II.
While the full expansion is necessary to satisfy the no-flux boundary condition on
each probe, computation of the O(Pe) force on probe I requires only the dipole
moment (n= 1) of the multipole expansion centred at probe I. This dipole moment is
identical to the dipole moment centred about probe II, and is given in vector notation
for arbitrary orientation as

f dipole
1,I =

r
r3
· ((A′10 − a′10) d̂d̂− (A′11 + a′11)(I − d̂d̂)) · Û, (4.13)

where the subscripts 1,I correspond to the first perturbation to the structure about
probe I. Expansion of the coefficients in a Taylor series about d→∞ then gives

f dipole
1,I =

r
2r3
·

(
I +

I − 3d̂d̂
2d3

+
I + 3d̂d̂

4d6

)
· Û+O

(
1
d8

)
, (4.14)

consistent with the O(1/d3) results of Krüger & Rauscher (2007). Here, we have kept
the three most physically significant terms: an isotropic term, a term decaying as 1/d3

and a term decaying as 1/d6. Further terms in the Taylor expansion, as well as higher-
order (quadrupole, octupole, etc.) moments are tabulated in appendix C.

As d→∞, only the isotropic term remains, recovering the O(Pe) microstructure
of a single probe moving through a suspension (Squires & Brady 2005). The terms
scaling as 1/d3 and 1/d6 arise from probe interactions through the medium, and vary
with probe orientation as cos α = d̂ · Û. Physically, the motion of probe II through the
suspension distorts the surrounding microstructure, giving rise to a diffusive flux of
bath particles that in turn interacts with probe I by inducing bath-particle collisions
on its surface. Essentially, the bath particles act as an effective medium, influencing
the motion of probe I via their flux. This is analogous to hydrodynamic entrainment,
where a particle sets the fluid into motion, which in turn influences the motion of
a second particle. As such, we term the interactions mediated via bath-particle flux
entropic entrainment. Entropic entrainment can either hinder or enhance probe motion,
depending on the direction of bath-particle flux, and manifests as a 1/d3 disturbance
to the structure about probe I (second term in (4.14)). At the same time, the motion
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of probe I generates the same flux, entraining probe II with a 1/d3 disturbance to
its structural deformation. Similar in ethos to reflection of hydrodynamic interactions
through pure solvent between two spheres, this disturbance flux triggers an infinitude
of reflected bath-particle interactions, leading to the 1/d6 and higher-order terms
in (4.14).

Whether the disturbances hinder or facilitate probe motion depends on the
orientation of the probes. In the tandem orientation (d̂ · Û= 1), the structural distortion
about each probe is reduced relative to that of a single probe, i.e. the probes shield
one another from the bath particles. Physically, the lead probe generates a depleted
region behind it, reducing the structural drag on the trailing probe, while at the same
time the trailing probe generates a flux of bath particles toward the leading probe,
reducing the drag on the leading probe by an equivalent amount. In the side-by-side
orientation (d̂ · Û= 0), each probe accumulates particles in the upstream region into
which the other probe must travel, with two consequences: increased structural drag
and pressure on both probes, and more pronounced downstream depletion. Overall,
the probes entrain one another via the bath particles to slow each other down.

Bath-particle advection arises in the second-order correction to the microstructure:
the O(Pe2) microstructural distortion f2. While the algebraic complexity of the
multipole expansion of f2 necessitates numerical solution for arbitrary probe separation
(cf. appendix E), we have computed the O(Pe2) multipole expansion about each probe
in the limit of large separations. To illustrate the flux/motion interplay, the multipole
expansion about probe I was found here to be

f2,I =
Û
4
·

{(
I

r
−

1
3

[
I

r3
− 3

rr
r5

]
−

rr
r3

)
·

(
I +

I − 3d̂d̂
2d3

)}
· Û

+
r

8r3
·

(
d̂I − 3d̂d̂d̂

d2

)
: ÛÛ+O

(
1
d3

)
, (4.15)

and about probe II to be

f2,II =
Û
4
·

{(
I

r′
−

1
3

[
I

r′3
− 3

r′r′

r′5

]
−

r′r′

r′3

)
·

(
I +

I − 3d̂d̂
2d3

)}
· Û

−
r′

8r′3
·

(
d̂I − 3d̂d̂d̂

d2

)
: ÛÛ+O

(
1
d3

)
, (4.16)

where r′ = r− d is the position of a bath particle relative to probe II. When d→∞
(no probe/probe interactions), the first terms in braces in (4.15) and (4.16) recover the
O(Pe2) weakly nonlinear correction to the microstructure about a single probe (Khair
& Brady 2006; Zia & Brady 2010).

In both (4.15) and (4.16), the first term, Û · {·} · Û, and the second term, (·) : ÛÛ,
capture distinct physical phenomena. The former arises from the O(1/d3) term of f1,
which is identical about each probe, and thus cannot lead to net particle accumulation
or depletion between the probes; depletion behind the leading probe will be balanced
by accumulation in front of the trailing probe. In contrast, the latter term in each
differs by a sign, indicating that accumulation (depletion) behind the leading probe
arising from this term is enhanced by accumulation (depletion) in front of the trailing
probe. Thus, the second term in (4.15) and (4.16) encode the strength of particle
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accumulation (or depletion) between the probes. Whether bath particles accumulate or
are depleted depends on the probe orientation, α. In the tandem orientation, α= 0, the
leading probe shields the trailing probe, reducing the advective flux of bath particles
toward the trailing probe, which in turn leads to bath-particle depletion between the
probes. In the side-by-side orientation, α=π/2, the diffusion of bath particles passing
between the two probes is sterically hindered, giving rise to bath-particle accumulation
between the probes. In general, the magnitude of accumulation (or depletion) depends
on the quantity

(I− d̂d̂) : ÛÛ= 1− 3 cos2 α, (4.17)

where positive values give rise to accumulation, and negative values to depletion. Thus,
to leading order, there can be no net accumulation or depletion between the probes
when α = cos−1(1/

√
3).

Analysis of the expressions obtained for linear and weakly nonlinear microstructural
distortions leads to two key observations: microstructural distortions about two
probes travelling in the tandem orientation are reduced relative to a single probe by
shielding effects, while structural distortions about probes travelling in the side-by-side
orientation are enhanced. For probe separation d< 2, the Smoluchowski equation must
be solved numerically, as was shown in appendices C and D.

To obtain solutions for the perturbed microstructure for arbitrary separations d,
we note that the weakly nonlinear microstructure may be written in terms of five
orientation-independent functions (cf. appendices C and D):

f1(r | d; α) = cos αf ‖1 (r | d)+ sin αf⊥1 (r | d), (4.18a)

f2(r | d; α) = cos2 αf ‖2 (r | d)+ sin2 αf⊥2 (r | d)+ sin 2αf×2 (r | d). (4.18b)

Contour plots of each of these five components of the microstructural distortion are
shown in figure 5 for two separations, d = 1 and d = 3. These two values of d are
chosen to illustrate the influence of excluded-volume interactions as probe separation
is decreased from d = 3 to d = 1. Contour plots in the left column correspond
to d = 3; the parallel microstructural contributions f ‖1 and f ‖2 , shown in plots (a,e),
exhibit a decrease in bath-particle density in the region between the probes, while
the perpendicular components f⊥1 and f⊥2 , shown in plots (b, f ), exhibit an increase, in
agreement with our analytical expressions. In contrast, the microstructural distortion
contour plot for d = 1 (figure 5c,d,h,i,j) differ qualitatively, because, when d < 2,
the excluded-volume surfaces of the probes overlap and bath particles cannot enter
the intervening gap, giving a microstructural distortion that resembles that of an
isolated, non-spherical probe. This highlights the two competing mechanisms of
probe interaction: for closely spaced probes, excluded-volume effects exert a much
stronger influence on the microstructure, and hence the force exerted on the probes,
than probe–probe interactions through the bath.

4.1.2. Drag force in the linear-response regime
For asymptotically weak forcing, the O(Pe) (linear response) force exerted on

each of the probes by the bath particles is linearly related to probe velocity by the
resistance tensors R̂11 and R̂12. These tensors exhibit the same symmetries of Stokes
flow, with the important implication that the leading-order interactions can produce
no relative force between two same-size, same velocity probes. That is, there is no
O(Pe) tendency for the probes to attract or repel one another; the linear-response
force is a drag force that acts to slow centre-of-mass probe motion. Insertion of (4.4)
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FIGURE 5. (Colour online) Contour plots of two probes driven weakly (Pe� 1) through
the suspension. Top two rows: parallel and perpendicular components of the O(Pe)
microstructure row separations d = 3 (a,b) and d = 1 (c,d). Bottom three rows: parallel,
perpendicular and skew components of the O(Pe2) microstructure for separations d = 3
(e–g) and d= 1 (h–j). The microstructure varies smoothly from strong depletion in blue to
strong accumulation in red, with green representing the equilibrium, unperturbed structure,
while the black circles represent the excluded-volume surfaces of the probes.

and (4.5) into (3.24) gives the drag force in the linear-response regime in terms of
these tensors as

|Fdrag
|

6πηmicro
U,0 ahU

=

√
cos2 α(R‖11 + R‖12)

2 + sin2 α(R⊥11 + R⊥12)
2. (4.19)
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FIGURE 6. Drag force in linear-response regime as it varies with probe separation. Main
figure: force obtained from numerical solutions of (4.2) for several orientations α. Inset:
scalar resistance functions coupling drag to velocity. (Solid lines are analytical solutions;
open symbols are numerical solutions.)

We derived analytical expressions for the four resistance functions in (4.19), which
can be found in appendix C. The drag force |Fdrag

|, normalized on the single-probe
drag 6πηmicro

U,0 U, is plotted along with the four resistance functions as a function of
probe separation in figure 6 for several orientations α.

In the tandem orientation (α = 0, solid curve in figure 6), the drag force exerted
on each of the probes by the deformed microstructure is strictly weaker than that
exerted on a single probe driven through the suspension by the same external force,
showing that tandem motion of two probes is easier for each than for one alone.
Physically, this drag reduction arises when the trailing probe travels into the region
of reduced bath-particle density following the leading probe (cf. figure 5). This
shielding effect becomes more pronounced with decreased probe separation, leading
to a corresponding monotonic reduction of drag with decreasing probe separation. In
fact, the rate of drag reduction speeds up as the probes get closer, until d = 2, after
which the reduction slows.

Side-by-side (α =π/2) probe translation produces qualitatively different behaviour.
When the pair are not close, d> 2, the microstructural drag on each probe is greater
than that on a single probe translating under the same external force. The drag
increases with decreasing separation, owing to an increase in bath-particle density
about each probe, particularly in the region between them (cf. figure 5). However,
this trend reverses as the probes get closer: for d < 2, the drag force decreases with
decreasing probe separation, due to the exclusion of bath particles from the intervening
gap between the probes (cf. figure 5); the reduction of collisions mitigates drag.
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Finally, for separations d . 1.1 it becomes easier for the two probes to move together
than one alone. Overall, it is harder for two probes in the side-by-side orientation to
move together than if they travelled alone through the suspension, except when they
travel so close together that they shield one another from collisions.

Comparison of the two limits, α = 0 and α = π/2, reveals that it is always easier
for a pair of probes to move in the tandem orientation than in the side-by-side
orientation; that is, there is an energetic penalty associated with side-by-side motion
as evidenced by the higher rate of effective viscous dissipation. The penalty is small
for widely separated probes, and increases as the probes get closer until a maximum
is reached near d' 1.8. The probes can reduce this energetic cost in one of two ways:
by travelling together or apart, or by reorientation toward the tandem configuration,
during which they will each experience a monotonic decrease of the drag force
(cf. figure 6). As will be discussed next in § 4.1.3, both of these behaviours mitigate
the energetic penalty of side-by-side translation in the weakly nonlinear-response
regime.

4.1.3. Interactive force in the weakly nonlinear regime: relative motion
Relative probe motion – reorientation and attraction or repulsion – first emerges

in the weakly nonlinear regime. The O(Pe2) bath particle-mediated force is given
by the third-rank weakly nonlinear resistance tensor T̂ 1 which couples the interactive
force to weakly nonlinear motion. We showed that, after an orthogonal decomposition,
T̂ 1 is described by three scalar coupling coefficients, which propagate the parallel
and perpendicular interactive force as given by (4.11)–(4.12). We obtained analytical
expressions for the three scalar coefficients appearing in (4.11) and (4.12), which can
be found in appendix D.

The parallel interactive force that tends to produce relative motion – attraction or
repulsion – as well as the resistance coefficients T‖ and T⊥, are plotted in figure 7,
which shows that the attractive or repulsive nature of the parallel interactive force
depends both on probe separation d and orientation α. Interactions in the tandem
orientations (α = 0) are strictly attractive for all separations; physically, this arises
due to collision shielding of the trailing probe by the leading probe. Because the lead
probe experiences more head-on collisions with bath particles than does the trailing
probe, the result is an effective non-equilibrium attraction. However, the attraction
strength is non-monotonic in probe separation; it first increases with decreasing
separation (moving right to left in figure 7) until a local maximum is reached at
d ' 2.4. At this close proximity, the space available for bath particles is severely
restricted by the two nearby no-flux surfaces of the probes, and they accumulate
there. For separations d< 2, bath particles are excluded entirely from the gap between
the probes, and the resulting imbalance in osmotic pressure leads to a pronounced
increase in attraction strength, in a manner similar to the equilibrium depletion force.

The interactive force in the side-by-side orientation (α = π/2) is qualitatively
different from that in the tandem orientation and also from the equilibrium depletion
force, both of which are strictly attractive. In the side-by-side orientation, first the
probes repel, then they attract as they approach one another. Physically, bath particles
near the outboard surfaces of the probes may diffuse freely away, while particles
between the probes accumulate as they struggle to migrate through the constrained
gap between the probes, and the increased osmotic pressure acts to drive the probes
apart. This intensifies as the gap shrinks until it becomes small enough to exclude bath
particles entirely (d= 2). Beyond this, the gap is dilute relative to the bath, reducing
the repulsion strength until interactions become attractive for separations d . 1.8. This



www.manaraa.com

Non-equilibrium pair interactions in colloidal dispersions 715

 0

 –0.2

 –0.4

0.2

 0.4

0.6

2 4 6 8 10 12

–0.2

–0.1

0

0.1

0.2

 0.3

2

0 tandem

4 6 8 10 12

FIGURE 7. Attractive/repulsive interactive force in weakly nonlinear regime as it varies
with probe separation. Main figure: force obtained from numerical solutions of (4.3)
for several orientations α. Inset: scalar resistance functions coupling interactive force to
velocity. (Solid lines are analytical solutions; open symbols are numerical solutions.)

produces a Pe2-small enhancement to or reduction of the O(1) equilibrium depletion
force. However, it acts over a much longer range of many particle lengths. This
long-ranged repulsion, when coupled with the long-ranged attractions in the tandem
orientation, may give rise to the formation of particle-rich columns or long particle
chains in dense suspensions.

Between these two limits, 0< α < π/2, the curves show a smooth transition from
pure attraction behaviour to the separation-dependent repulsive/attractive behaviour.
Of note is the tendency for the most repulsive configurations to become the most
attractive as d→ 1, suggesting a tendency to reorient, discussed next.

Beyond attraction and repulsion, a tendency to reorient emerges at O(Pe2), and
this force, (cf. (4.12)), is projected from the velocity onto the force by the scalar
resistance function T×. As such, varying α only serves to change the magnitude of
the reorientation force. The reorientation force Fint

⊥
is plotted in figure 8, scaled on

sin 2α. The force is strictly negative for all separations. This implies that the tandem
orientation is stable for all probe separations in the weakly nonlinear regime, while
the side-by-side orientation is unstable: any small perturbation from this arrangement
results in a force that pushes the probes toward the tandem alignment. Physically, this
arises from a self-reinforcing recirculating bath-particle flux from the accumulation
region of each probe toward the depletion region of the other. This can be seen
mathematically from expression (4.15), whereupon insertion into (3.17) shows that
the reorientation force on each probe emerges only from the disturbed structure, f2,I/II
about the other. For widely separated probes, the strength of bath particle flux from
one probe to the other increases as the probes grow closer, which in turn increases
the reorientation force. When bath particles can no longer fit between the probes
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FIGURE 8. Reorientation force in the weakly nonlinear regime, scaled on sin 2α, as it
varies with probe separations. (Solid lines obtained from analytical solution of (4.3); open
symbols are numerical solutions.)

(d < 2), the overlap of the excluded volume reduces the flux of bath particles from
one probe to the other, which in turn leads to a reduction in the reorientation force
as the separation is decreased.

4.1.4. Comparison with continuum theory
At wide separations, the probes interact over length scales much larger than the

size of the bath particles, making it natural to view the weakly deformed intervening
suspension as an effective continuum. Recall that the linear-response pair resistance
functions that couple microstructural drag to velocity give configuration-independent
effective viscosity. At wide separations, these decay as R‖12 =−2R⊥12 ∼ 1/d3 (cf.
appendix C), reminiscent of Brinkman’s continuum theory applied to interactions
between a pair interacting through a porous medium (Kim & Russel 1985) or in
a bed of fixed particles (Durlofsky & Brady 1987). This behaviour is characteristic
of the interactions between mass dipoles in Stokes flow (Diamant 2007) as seen
also in interactions between aerosol particles (Keh & Chen 1995), and interactions
between electrophoretically driven colloids (Long & Ajdari 2001). The origin of this
correspondence between continuum mechanics and our micromechanical model can
be seen by examining the linear-response microstructure (4.14). In the linear-response
regime, the probes behave as diffusive dipoles: bath particles accumulate in front
of the probes and are depleted from behind, creating a disturbance sink and source.
From the perspective of a second probe located far from the first, the first probe
behaves as a mass dipole: there is an effective mass source at the front of the probe,
and an equivalent sink in the back.

This analysis would change slightly with the inclusion of hydrodynamic interactions.
In particulate matter, there are two sources of long-ranged interactions, the mass dipole
computed here arising from mass conservation of the microstructure, and a point force
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(Stokeslet) arising from momentum conservation in the fluid (Diamant 2007). In our
system, for finite values of κa, κb, the point force will give rise to a hydrodynamic
resistance tensor equivalent to two probes interacting through a Newtonian fluid of
effective viscosity 5ηφbh/2:

Rhydro
12 = 6π

(
5
2
ηφbh

)
ah

ah

a+ b

(
3
4

1
d

d̂d̂+
3
4

1
d

I

)
, (4.20)

where φbh is the volume fraction of bath particles based on the hydrodynamic radius
bh and the factor ah/(a + b) arises because d is made dimensionless on a + b. The
point force decays as 1/d, and as such will be much larger than the 1/d3 mass dipole
as d→∞. The relative importance of the two terms at intermediate probe separations
is seen by equating the entropic resistance tensor in (4.8) to that in equation (4.20),
revealing that, for equal-sized probe and bath particles, the mass dipole is larger than
the point force when d� (1+ κa)

2. Thus, in the full hydrodynamics limit (κa→ 0)
the point force is always dominant, while in the freely draining limit considered
here (κa → ∞), the point force may be neglected entirely. That is, the Einstein
viscosity correction vanishes in freely draining suspensions. For finite values of κa,
the separation of length scales between the thermodynamic and hydrodynamic radii of
the probes gives rise to mass dipole-like interactions for small to intermediate probes
separations until the point force ‘kicks in’ at d∼ (1+ κa)

2. This separation of length
scales is similar to behaviours observed in two-point microrheology experiments in
viscoelastic networks, where the tracer beads interact as mass dipoles at length scales
less than the dynamic correlation length of the network, and as point forces for larger
separations (Sonn-Segev et al. 2014).

This comparison with continuum mechanics may be extended to the weakly
nonlinear regime. Our micromechanical model predicts that the third-rank resistance
tensor coupling the interactive force to weakly nonlinear motion T̂ 1 decays as 1/d2

for widely separated probes (cf. appendix D). Pair interactions in the continuum
second-order fluid model are described by an analogous third-rank tensor that also
decays as 1/d2 (Brunn 1977). Furthermore, the second-order fluid model predicts
that the side-by-side configuration is unstable (Brunn 1977), much as in our model.
However, qualitative differences arise when considering attraction and repulsion. In
the continuum theory, a pair of probes are attracted toward one another regardless
of their separation and orientation (Brunn 1977; Khair & Squires 2010). In contrast,
when accounting for the detailed microstructural evolution of the bath, the attractive
or repulsive character of the interactive force depends on probe separation and
orientation (cf. figure 7). This discrepancy arises largely from the neglect of local
microstructural heterogeneity by the second-order fluid model; while the second-order
fluid model can account for the evolution of conformational degrees of freedom of
individual polymers as the slow-flow limit of polymer dumbbell models (Bird et al.
1977), it cannot account for microstructural evolution at length scales larger than a
single particle. In our micromechanical model, the linear-response microstructure is
locally homogenous, as each region of bath-particle accumulation is exactly balanced
by depletion, and there is a correspondence between continuum mechanics and
micromechanics, as evidenced by the identical 1/d3 scalings of the linear resistance
tensors in each approach. However, in the weakly nonlinear regime, advective flux
leads to a build-up of bath particles around and between the probes, leading to
local spatial heterogeneities that produce the repulsive interactions not captured by
continuum theory.
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(a)

(b)

(c)

FIGURE 9. (Colour online) Contour plots for two probes driven strongly (Pe=10) through
the suspension for various separations d = 1 (a), d = 1.95 (b) and d = 3 (c). The
microstructure varies smoothly from strong depletion in blue to strong accumulation in
red, with green representing the equilibrium, unperturbed structure. For each separation,
five orientations are shown: α = 0,π/6,π/4,π/3 and π/2.

4.2. Arbitrary forcing
4.2.1. Microstructure

Here we study the microstructural response to arbitrary strength of forcing.
Beyond the weakly nonlinear regime, the microstructural symmetries that produces
Stokes-flow-like resistance tensors coupling applied force to probe velocity are lost.
To obtain the effective force exerted on the probes as they travel through the bath,
the configuration of bath particles g(r | d; α, Pe) must be determined for each probe
separation d, orientation α and velocity Pe. To do so, we solve (3.10), the conditional
pair Smoluchowski equation, over a wide space of these parameters, via a numerical
finite-difference method (cf. appendix E). An example set of contour plots of the
microstructure thus obtained for Pe = 10 is given in figure 9 for a range of probe
separations d and orientations α; contour plots for Pe = 5, 20 and 50 are given in
the supplementary material available at https://doi.org/10.1017/jfm.2017.789. Colours
range from dark red for strong accumulation to green for undisturbed structure to
dark blue for strong depletion of bath-particle density. In this regime, bath particles
are strongly advected to the surfaces of the probes; bath particles accumulate in an

https://doi.org/10.1017/jfm.2017.789
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upstream boundary layer, and are depleted in a trailing wake. The boundary layers
and wakes of the two probes interact, giving rise to a structural distortion that depends
strongly on probe separation and orientation.

When d= 1 (figure 9a), the microstructural distortion around the probes resembles
that caused by the motion of a single, non-spherical probe. Bath particles are excluded
from the gap between the probes, and accumulate on their outboard surfaces. Upon
increasing the separation to d = 1.95 (figure 9b), the exclusion region shrinks,
increasing the volume accessible to bath particles. Particles are advected into the
gap, but now must diffuse through to pass by the probes. The no-flux probe surfaces
dominate the region, restricting the escape route of the bath particles and causing them
to accumulate until they slowly diffuse through. Accumulation is most pronounced
in the side-by-side orientation (α = π/2), where the upstream faces of both probes
are entirely exposed to collisions, forcing bath particles into the gap; accumulation
is weakest in the tandem orientation (α = 0), where the leading probe shields the
trailing probe from collisions, and the gap from bath-particle entry.

At still larger separations, d= 3 (figure 9c), bath particles may pass freely through
the gap between the probes. A key feature of the distorted microstructure at this
separation is the shedding of the detached boundary layer of the leading probe
towards the trailing probe. Whether this increases or decreases bath particle density
around the trailing probe depends on probe orientation. In the tandem orientation
(α = 0), the trailing probe travels through the wake created by the translation of the
leading probe, a phenomenon first noted by Khair & Brady (2007). Essentially, the
trailing probe moves through a tunnel devoid of bath particles in a manner reminiscent
of the reduced viscosity corridors proposed to explain experimentally observed pair
attractions (Joseph et al. 1994). The bath-particle density about the trailing probe
increases when it is not travelling directly behind the leading probe (α = π/6, π/4,
and π/3). At these orientations, bath particles are shed from the forward-most probe
toward the upstream face of the trailing probe, where they then accumulate. Finally,
in the side-by side orientation, bath particles may move freely between the probes,
leading to probe microstructures that are largely independent. We now analyse the
drag and interactive forces produced by these micromechanics.

4.2.2. Drag force
The magnitude of the drag force is obtained from (3.24) by inserting the

microstructures obtained in § 4.2.1 into (3.17), and is plotted as a function of probe
separation d in figure 10, for Pe= 10 for several probe orientations α; corresponding
plots for Pe= 5, 20 and 50 are given in the supplementary material. The drag force
is normalized by the microstructural drag of a single, fixed velocity probe at the
same value of Pe (Squires & Brady 2005; Swan & Zia 2013). At small separations,
|Fdrag

|< 6πηmicro
U ahU, showing that each probe experiences a reduction in drag relative

to that of a single probe travelling at that same velocity, confirming the microstructural
picture that the two probes behave as a single, non-spherical particle (cf. figure 9).
Drag decreases even further as α decreases from the side-by-side (α = π/2) to the
tandem (α = 0) orientation, because the trailing probe is increasingly shielded from
bath-particle collisions by the leading probe. As the probes begin to separate, the drag
on each increases regardless of orientation; and for some orientations, π/4 6 α 6π/2,
the drag force on each is greater even than on a single probe moving through the
suspension. Once the probes near the tandem orientation, α = π/6, this behaviour
is delayed to separations d > 2.5, where the wake from the leading probe is shed
directly toward the upstream face of the trailing probe (cf. figure 9), increasing the
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FIGURE 10. Magnitude of the drag force on each probe for Pe= 10, scaled on the low-Pe
single-particle drag force 6πηmicro

U ahU at that same value of Pe, plotted as a function of
probe separation d for various orientations α. Symbols: numerical results obtained from
solution of (3.10).

total microstructural drag above that of any other orientation. Finally, for all probe
separations, microstructural drag force is smallest in the tandem orientation, α = 0,
where the leading probe fully shields the trailing probe from collisions.

Next, we look for evidence of the non-Newtonian rheology observed in shear
flow (Bergenholtz et al. 2002) or singe-probe active microrheology (Squires & Brady
2005; Swan & Zia 2013), e.g. shear or velocity thinning of the effective viscosity with
increasing flow strength, Pe. To do so, we plot the magnitude of the drag force acting
on each probe in the side-by-side orientation in figure 11 as a function of Pe. The
drag force is scaled advectively on the single-particle entropic drag force 6πηmicro

U,0 ahU
to give the particle drag viscosity, analogous to the single-probe microviscosity
(Squires & Brady 2005; Swan & Zia 2013). The solid curve for d→∞ recovers
behaviour identical to single-probe non-Newtonian viscosity (Swan & Zia 2013),
with a low-Pe Newtonian plateau, the onset of velocity thinning at Pe∼ 1, and decay
toward a high-Pe Newtonian plateau of ηmicro

U = ηmicro
U,0 /2. For all separations, the curves

exhibit qualitatively similar behaviour; at Pe� 1, the asymptotic results of § 4.1.2 are
recovered, where the drag force is linear in the forcing. The separation dependence
of the drag force observed in figure 10 for Pe = 10 and d < 2 holds across the
entire range of Pe examined: very closely spaced probes each experience a reduction
in drag relative to that on a single probe, while larger separations (1.5 6 d 6 1.8)
experience an increase in drag due to strong bath-particle accumulation between the
probes. Qualitatively different behaviour is observed when the probe separation is
large enough for bath particles to fit between them (d > 2). When forcing is weak,
the drag force for the separation d = 2.5 is greater than that of a single probe, as
bath-particle accumulation between the probes increases the total resistance. As Pe is
increased, boundary layers formed around each probe compress and narrow with the
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FIGURE 11. Magnitude of the drag force acting each probe in the side-by-side orientation
(α = π/2), scaled on the low-Pe single-particle drag force 6πηmicro

U,0 ahU, plotted as a
function Pe for various probe separations d. Lines: numerical results obtained from
solution of (3.10). The d→∞ result was first obtained by Squires & Brady (2005).

growing flow strength, until ultimately the detached boundary layers cease to interact,
and the drag force then approaches the single-probe limit.

4.2.3. Parallel interactive force: attraction and repulsion
The parallel component of the interactive force – the non-equilibrium attractive

or repulsive force – is plotted in figure 12 as a function of probe separation at
fixed Pe = 10 for several probe orientations; corresponding plots for Pe = 5, 20 and
50 are given in the supplementary material. The equilibrium depletion force, given
by (3.1), is also plotted for comparison. In § 4.1.3, we showed that in the weakly
nonlinear regime, pair interactions give rise to an O(Pe2) small enhancement or
reduction of the O(1) equilibrium depletion force. Here, in the nonlinear regime,
we see that non-equilibrium interactions are stronger than the equilibrium force.
For small separations, bath particles are excluded from the space between the probes
(cf. figure 9), and the resultant imbalance in osmotic pressure leads to non-equilibrium
attractions stronger than the equilibrium depletion force for all orientations α.
Increasing the separation reduces this imbalance, decreasing the attraction strength.
For orientations at or near the side-by-side orientation (π/4 6 α 6π/2), bath particles
accumulate strongly between the probes (cf. figure 9), leading to repulsive interactions
between the probes, a reversal from the attraction at or near the tandem orientation
(0 6 α 6π/6), where the leading probe shields the trailing probe from collisions. For
separations d > 2, the force quickly decays to zero for all orientations other than
tandem (α = 0). Away from the tandem orientation, interactions are largely mediated
by the O(1/Pe) thick boundary layer about each probe, leading to interactions that
quickly decrease with increasing separation. In the tandem orientations, the trailing
probe is immersed in the O(Pe) long wake of the leading probe, giving rise to
long-range attractions, as previously found by Khair & Brady (2007).
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FIGURE 12. (Colour online) Attractive/repulsive parallel interactive force, scaled on the
characteristic osmotic force nbkT(a+ b)2, plotted as a function of probe separation d for
Pe= 10 for various orientations α. Symbols: numerical results obtained from solution of
(3.10). Solid red line: equilibrium depletion force (3.1).

To examine the effects of the strength of forcing on the interactive component
of the effective force, the parallel interactive force between two probes in the
side-by-side orientation is plotted as a function of Pe in figure 13. To elucidate
the separation dependence of the interactive force across several decades in Pe, the
interactive force has been scaled advectively on Pe. For all separations, the advectively
scaled interactive force increases in magnitude with increasing Pe until Pe ∼ O(1),
reflecting the Pe2 scaling of the interactive force in the weakly nonlinear regime.
Further increase of Pe decreases the advectively scaled interactive force in a manner
analogous to the flow thinning observed in the drag force (cf. figure 10). As Pe grows
large, Pe� 1, the interactive force depends on probe separation. For separations d< 2,
bath particles are excluded from between the probes, and the resultant imbalance in
osmotic pressure gives rise to a non-zero interactive force as Pe → ∞. However,
the attractive or repulsive nature of the interactive force depends on both separation
and Pe. Interactions are strictly attractive for d = 1, as bath-particle accumulation
on the outboard surfaces of the probes drives them together (cf. figure 9). At larger
separations, bath-particle accumulation between the probes can drive them apart. For
d = 1.5, this behaviour is non-monotonic: the force is attractive for weak forcing,
becoming repulsive as the forcing strength increases and bath particles accumulate in
the cleft between the probes, and finally transitions to a second repulsive regime at
Pe' 30 as the boundary layer narrows. The force for d= 1.8 is strictly repulsive due
to strong accumulation between the probes. For larger separations (d> 2), the probes
will cease to interact as Pe→∞, as the shed boundary layers of the probes narrow.
This behaviour is realized for the separation distance d= 2.5; the probes repel when
Pe is small, with the magnitude increasing with Pe until Pe∼ O(1), after which the
interactive force vanishes.
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FIGURE 13. Attractive/repulsive parallel interactive force acting on two side-by-side
probes (α=π/2), scaled on the characteristic osmotic force nbkT(a+ b)2 and advectively
on Pe, plotted as a function Pe for various probe separations d. Lines: numerical results
obtained from solution of (3.10).
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FIGURE 14. (a) Reorientational perpendicular interactive force, scaled on the characteristic
osmotic force nbkT(a + b)2, plotted as a function of probe separation d for Pe = 10
and various orientations α. Symbols: numerical results obtained from solution of (3.10).
(b) Reorientation force, for Pe, plotted versus probe orientation α for fixed separation d.

4.2.4. Perpendicular interactive force: reorientation
The perpendicular component of the interactive force, the reorientation force, is

plotted in figure 14(a) for Pe= 10 as a function of separation as probe orientation
is varied; corresponding plots for Pe= 5, 20 and 50 are given in the supplementary
material. In the weakly nonlinear regime, this force always acts to move the probes
toward the tandem orientation, indicating that the side-by-side configuration is always
unstable (cf. § 4.1.3). Far from equilibrium, the perpendicular interactive force exhibits
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qualitatively different behaviour. For separations d > 2.3, the reorientation force
at each separation d may be strongly positive or weakly negative, depending on
orientation α. This behaviour is explored in figure 14(b), where the reorientation
force is plotted versus probe orientation α for fixed separation d. The orientation for
which Fint

⊥
reverses from positive to negative at a given separation d and flow strength

Pe may be used to define a critical orientation, 0 < αc(d, Pe) < π/2. When α < αc,
the reorientation force is negative, and the probes are pushed toward the tandem
orientation; the probes are pushed toward the side-by-side orientation when α > αc.
Physically, this behaviour arises from interactions mediated by the detached boundary
layer of the leading probe. Bath particles from the leading probe are shed toward the
upstream face of the trailing probe (cf. figure 9). When α < αc, the majority of this
density falls on the exterior surface of the trailing probe, pushing it into the wake
behind the first probe. In contrast, when α > αc, the majority of the particle density
is on the interior face of the second probe, pushing it away from the wake.

The stability of the tandem and side-by-side orientations as a function of probe
separation may be examined through the framework of this critical orientation. The
critical orientation is plotted versus probe separations for fixed values of Pe in
figure 15, giving a ‘stability map’ for the probes. Probes with orientations and
separations falling below the critical orientations experience a force pushing them
toward tandem orientation, while the force on probes falling above the line pushes
them toward side-by-side orientation. Thus, for separations where αc(d) = π/2, only
the tandem orientation is stable, while both orientations are stable when αc(d) <π/2.
The separation distance for which the side-by-side orientation is first stable, i.e.
where αc is first less than π/2, decreases as the strength of forcing decreases. This is
because as Pe increases, diffusion is weakened relative to advection, and the boundary
layer shed from the leading probe narrows, which in turn decreases the density of
bath particles shed upon the trailing probe.

4.2.5. Comparison with experiments
In the nonlinear-response regime, our model predicts that probes sedimenting

side-by-side under gravity will attract and reorient if their initial spacing is small,
and will fall without reorienting when widely separated, in qualitative agreement with
experimental observations (Joseph et al. 1994; Gumulya et al. 2011a). This highlights
the utility of our micromechanical model, where prior theoretical approaches (Brunn
1977) predict that the side-by-side orientation is always unstable. However, there
are discrepancies between our model and experimental results, largely owing to the
large size of the probes in experiments (a∼ 1–10 mm). In experiments, the separation
distance for which the side-by-side orientation is stable is set by the probe size, where
in our model it is set by the bath-particle size. This discrepancy can be understood
by recognizing that hydrodynamic interactions, neglected in the present model, can
produce changes in the strength and range of the interactive force (Sriram & Furst
2012, 2015). In the side-by-side orientation, repulsive interactions are suppressed and
the force becomes longer ranged, while the strength of attraction is reduced in the
tandem orientation.

However, the qualitative agreement between our results and experiments should not
be viewed as a fortunate coincidence. Our micromechanical model is valid in the
microscopic limit, where the probes interact (on average) with a single bath particle
at a time, whereas the large, macroscopic probes in experiments interact with many
polymer molecules. Extensive investigation in the field of microrheology has shown
a correspondence between the microscopic and macroscopic interrogation, owing to
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FIGURE 15. Critical orientation for which the reorientation force Fint
= 0 plotted as a

function of probe separation d for various values of Pe.

similarities in structural asymmetry (Squires & Brady 2005; Khair & Brady 2006;
Zia & Brady 2012). Thus, while direct experimental comparison with our results
would require probes small enough to respond to depletion forces (a∼ 1–50 µm),
our findings are applicable to more general cases.

5. Conclusions
We have conducted a theoretical study of non-equilibrium pair interactions between

two probes immersed in and driven through a dilute, freely draining colloidal
dispersion. Decomposed of the total entropic force exerted on the probes into a drag
force and an interactive force reveals that the former seeks only to slow centre-of-mass
motion, whereas the latter seeks to change probe configuration. For weak departures
from equilibrium, we shown that the non-equilibrium force exerted on the probes is
described by a set of entropic resistance tensors. The drag force is coupled to probe
velocity U through the second-rank tensors R̂11 and R̂12, while the interactive force
couples to the velocity dyadic UU through the third-rank tensor T̂ 1; all are long
ranged and probe configuration dependent, similar to hydrodynamic resistance tensors.
We performed an orthogonal decomposition of these tensors that permit the drag
and interactive forces to be written in terms of seven orientation-independent scalar
functions. The linear resistance tensors were found to be ‘reversible’ in analogy with
Stokes flow; there can be no relative force on spherical, equal-sized, equal velocity
probes in the linear regime. The drag force arising from these linear resistance
tensors is always minimized in the tandem orientation, and maximized in the
side-by-side orientation. In the weakly nonlinear regime, the reversible symmetry of
the linear-response regime is broken and relative forces can arise between the probes.
It was found that the interactive force was strictly attractive at small separations,
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while the attractive or repulsive nature of the force depended on probe orientation
for intermediate and wide probe separations. The perpendicular interactive force
was found to be strictly negative, meaning that in the weakly nonlinear regime, the
side-by-side orientation is always unstable.

Far from equilibrium, we showed that the interactive and drag forces are no
longer described by a set of simple coupling tensors. Instead, the microstructure
was computed for each separation, orientation and strength of forcing. For widely
spaced probes, non-equilibrium forces arise largely from the shedding of the
detached boundary layer of the forward-most probe toward the trailing probe, while
excluded-volume interactions provide the dominant effect for closely spaced probes.
The drag force and parallel interactive force are qualitatively the same in the weakly
nonlinear and strongly nonlinear-response regimes; closely spaced probes always
attract and experience a reduction in drag, while the behaviour of widely spaced
probes is strongly dependent on probe orientation. In the tandem orientation, widely
spaced probes attract and the drag force is reduced, while widely spaced side-by-side
probes repel an experience an increase in drag. For orientations intermediate to the
tandem and side-by-side, it was found that the parallel interactive force and the drag
force are set by a balance of bath-particle shielding and accumulation.

The perpendicular interactive force in the nonlinear-response regime was shown to
be qualitatively different from the weakly nonlinear regime, where the side-by-side
orientation was always unstable. It was found that the reorientation force could be
strongly negative, or weakly positive, depending on probe orientation. This suggested
the existence of a critical angle αc(d) ∈ [0,π/2], for which the reorientation force
was zero. The critical angle was used to construct a ‘stability map’ predicting the
behaviour of sedimenting pairs. It was shown that tandem orientation is always stable,
and the side-by-side orientation is only stable for intermediate to widely separated
probes.

The predicted stability of the side-by-side orientation in our model for intermediate
to wide probe separations is in qualitative agreement with experiments (Joseph et al.
1994; Gumulya et al. 2011a), whereas prior theories involving the second-order
fluid model predict that the side-by-side orientation is always unstable (Brunn 1977;
Phillips & Talini 2007). These pair-level instabilities, as well as particle attraction
and repulsion, may lead to suspension instabilities. The existence of such instability
could be ascertained by utilizing mean pair-level forces, along with stochastic forces
arising from microstructural fluctuations (Zia & Brady 2010; Hoh & Zia 2016), to
obtain mean and fluctuating probe trajectories for use in a linear stability analysis of
probe concentration. It would be interesting to see if the types (if any) of instabilities
predicted from such analysis can provide a micromechanical mechanism for the
columnar instability sedimentation observed in shear-thinning fluids (Allen & Uhlherr
1989; Bobroff & Phillips 1998; Daugan et al. 2004; Mora et al. 2005) and bidisperse
suspensions (Weiland & McPherson 1979; Batchelor & Van Rensburg 1986). However,
further discussion of this phenomena is beyond the scope of the current work.

Future work may address the many interesting remaining questions. To date,
experimental and theoretical studies of particle pairs interacting through complex
fluids have focused on shear-thinning fluids; the influence of shear thickening has
largely been neglected. The inclusion of hydrodynamic interactions in our models
system would provide a pathway for the study of such behaviours, as lubrications
forces give rise shear thickening in colloidal dispersions (Bergenholtz et al. 2002;
Khair & Brady 2006). Further questions remain regarding the influence of normal
stresses on particle motion. In the absence of hydrodynamic interactions, normal
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stresses and the interactive force exhibit the same scalings, first arising at O(Pe2) in
the weakly nonlinear regime and scaling as O(Pe) far from equilibrium (Bergenholtz
et al. 2002; Zia & Brady 2012). It is possible that this correspondence could be
leveraged to develop experimental techniques from computing normal stresses from
dual-probe microrheology experiments. This, however, must be consigned to future
work.
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Appendix A. Three-body Smoluchowski equation
In the semi-dilute limit, the N-body Smoluchowski equation for PN (3.2) reduces to

an effective three-body equation:

∂ρ3

∂t
+∇d · ( j2 − j1)+∇r · ( j3 − j1)= 0, (A 1)

where the three-body correlation function

ρ3(z, d, r)= (N − 2)
∫

PN dr4 . . . drN, (A 2)

is obtained by integration over the relative positions of all bath particles but one, and
gives the density of bath particles surrounding the probes. Here, gradients are taken
with respect to the probe separation distance d and the position r of a bath particle
relative to a probe, and z = x1 is the absolute position of the first probe. For equal
velocity probes, their relative flux j2 − j1 = (U2 −U1)ρ3 vanishes and only the flux of
the bath particles relative to the probes, j3 − j1, remains.

Without loss of generality, the microstructure may be written in terms of a two-
particle probability,

ρ3(z, d, r)= nbg(r | d)P2(z, d), (A 3)

where g(r | d) is the conditional pair distribution function of a bath particle interacting
with two probes at fixed separation d, and the two-body probability density function
of the probes

P2(z, d)=
∫

PN dr3 . . . drN (A 4)

gives the probability of finding probe II in the differential volume dd, accounting
for all permissible configurations of bath particles relative to the probes. Utilizing the
conditional pair distribution function defined in (A 3), the three-body Smoluchowski
equation (A 1) is then transformed into a conditional pair problem:

U · ∇rg+Db∇
2
r g= 0, (A 5)

where g= g(r | d; α, Pe) and we have inserted (3.5) to obtain the bath-particle flux j3.

https://doi.org/10.1017/jfm.2017.789
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Appendix B. Many-body entropic interactions
Computation of the effective force on a probe proceeds by substituting (3.6) into

(3.12), giving

〈Feff
i 〉 = −6πηahU+

∫
(P2(zi, di)∇diV + kT∇diP2(zi, di)) dzi ddi

+

∫
(kT∇riρ3(zi, di, ri)+ ρ3(zi, di, ri)∇riV) dzi ddi dri. (B 1)

The distribution function P2 and ρ3 in (B 1) are obtained by integrating the N-body
probability density function over the positions of the bath particles relative to the
probes. Under the assumption that the interparticle potential V acts in a pairwise
fashion, equation (B 1) is exact in the limit of no hydrodynamic interactions.

As written, equation (B 1) contains a two-body and a three-body term. The two-
body term (first integral) corresponds to forces arising from probe–probe interactions,
which vanishes for fixed velocity probes interacting via a hard-sphere potential. The
second integral, the three-body term, gives the force exerted on the probe by the bath
particles. Then, after substituting the conditional pair distribution function defined in
(A 3) into (B 1), the N − 2 particle suspension-mediated force acting on a pair of
probes translating at fixed velocity U through a bath of hard-sphere colloids is given
by

〈Feff
i 〉 =−6πηahU+ nb

∫
r>0

kT∇rig(ri | di) dri + nb

∫
r>0

g(ri | di)∇riV dri. (B 2)

Appendix C. Computation of the drag resistance tensors R̂11 and R̂12

Computation of the linear resistance tensors R̂11 and R̂12 requires determination of
the O(Pe) disturbance function f1 governed by (4.2). Prior methods for the analytical
computation of f1 have relied on the dynamical superposition approximation (Dzubiella
et al. 2003; Krüger & Rauscher 2007) or the method of reflections (Dzubiella
et al. 2003). However, the dynamical superposition approximation does not correctly
satisfy the no-flux boundary conditions, and the method of reflections is limited
to widely spaced probes. Here, we overcome these limitations through the use of
a twin-multipole expansion. The microstructure is expanded in a set of spherical
harmonics centred about each probe, with the scalar coefficients in the series chosen
such that the no-flux boundary conditions on each probe is satisfied. Similar methods
have been used to compute the conductivity of composite materials (Jeffrey 1973),
the hydrodynamic resistance and mobility functions for translating spheres (Jeffrey &
Onishi 1984), and the electrophoretic mobility of a pair of spheres (Saintillan 2008),
for instance.

The linearity of the problem permits its expression as two simpler problems, motion
parallel and motion perpendicular to the line of centres:

f1(r | d; α)= cos αf ‖1 (r | d)+ sin αf⊥1 (r | d). (C 1)

Further analysis is facilitated by expressing the two orientation-independent functions
in (C 1) as a linear combination of two independent functions:

f ‖1 (r | d) = f ‖1(1)(r | d)+ f ‖1(2)(r | d), (C 2a)

f⊥1 (r | d) = f⊥1(1)(r | d)+ f⊥1(2)(r | d), (C 2b)
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FIGURE 16. Biaxial coordinate system.

where the four functions in (C 2) may be defined as any harmonic functions that
satisfy the far-field boundary condition (4.2c) and the no-flux conditions (4.2b) on
each probe as:

ni · ∇( f ‖1(1) + f ‖1(2))+ ni · ez = 0 on Si, (C 3a)

ni · ∇( f ‖1(1) + f ‖1(2))+ ni · ex = 0 on Si. (C 3b)

We choose a definition that satisfies (C 3) and facilitates further analytical analysis:

n1 · ∇f ‖1(1) + n1 · ez = 0 on SI, n1 · ∇f ‖1(2) = 0 on SI,

n2 · ∇f ‖1(1) = 0 on SII, n2 · ∇f ‖1(2) + n2 · ez = 0 on SII
(C 4a)

n1 · ∇f⊥1(1) + n1 · ex = 0 on SI, n1 · ∇f⊥1(2) = 0 on SI,

n2 · ∇f⊥1(1) = 0 on SII, n2 · ∇f⊥1(2) + n2 · ex = 0 on SII,
(C 4b)

where the subscript (1) now a indicates that the no-flux boundary condition is
satisfied on probe I with a vanishing radial derivative on probe II, while the boundary
conditions are reversed for (2).

Because the O(Pe) microstructural evolution is governed by Laplace’s equation,
the four O(Pe) disturbance functions in (C 1) may be expressed as a twin-multipole
expansion in spherical harmonics centred about each probe. Two spherical coordinate
systems are employed, one centred about probe I, denoted by (r, θ, φ), and second
system centred about probe II denoted by (r′, θ ′, φ) (cf. figure 16), giving the
expansion as

f ‖1(1) =
∞∑

n=1

A′n0
1

rn+1
Pn(cos θ)+ a′n0

1
r′n+1 Pn(cos θ ′) (C 5)

for the parallel disturbance and

f⊥1(1) =
∞∑

n=1

[
A′n1

1
rn+1

P1
n(cos θ)+ a′n1

1
r′n+1 P1

n(cos θ ′)
]

cos(φ) (C 6)

for the perpendicular disturbance. The boundary conditions (C 4a) and (C 4b) may be
rewritten in terms of these biaxial coordinates as

∂f ‖1(1)
∂r

∣∣∣∣∣
r=1

=−cos θ,
∂f⊥1(1)
∂r

∣∣∣∣
r=1

=−sin θ cos φ, (C 7a,b)
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A′n0 =
∑

s cnsd−s

n cn0 cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 cn10 cn11 cn12 cn13 cn14 cn15

1 1
2 0 0 0 0 0 1

2 0 3
2 0 3 0 11

2 0 12 0
2 0 0 0 0 0 0 0 1 0 4 0 10 0 21 0 45
3 0 0 0 0 0 0 0 0 3

2 0 15
2 0 45

2 0 54 0
4 0 0 0 0 0 0 0 0 0 2 0 12 0 42 0 114
5 0 0 0 0 0 0 0 0 0 0 5

2 0 35
2 0 70 0

6 0 0 0 0 0 0 0 0 0 0 0 3 0 24 0 108
7 0 0 0 0 0 0 0 0 0 0 0 0 7

2 0 63
2 0

TABLE 1. Coefficients of the multipole expansion centred at probe I for the parallel
microstructure f ‖1 .

a′n0 =
∑

s cnsd−s

n cn0 cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 cn10 cn11 cn12 cn13 cn14 cn15

1 0 0 0 1
2 0 0 0 0 0 1

2 0 3 0 12 0 81
2

2 0 0 0 0 1 0 0 0 0 0 1 0 7 0 32 0
3 0 0 0 0 0 3

2 0 0 0 0 0 3
2 0 12 0 123

2

4 0 0 0 0 0 0 2 0 0 0 0 0 2 0 18 0
5 0 0 0 0 0 0 0 5

2 0 0 0 0 0 5
2 0 25

6 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0
7 0 0 0 0 0 0 0 0 0 7

2 0 0 0 0 0 7
2

TABLE 2. Coefficients of the multipole expansion centred at probe II for the parallel
microstructure f ‖1 .

∂f ‖1(1)
∂r′

∣∣∣∣∣
r′=1

= 0,
∂f⊥1(1)
∂r′

∣∣∣∣
r′=1

= 0. (C 7c,d)

To satisfy these boundary conditions, it is convenient to re-express (C 5) and (C 6)
using a translation theorem for spherical harmonics (Hobson & Tuinier 1931)

1
r′n+1 Pm

n (cos θ ′)eimφ
=

1
dn+1

∞∑
s=m

(
n+ s
s+m

)( r
d

)s
Pm

s (cos θ)eimφ. (C 8)

Insertion of (C 5), (C 6) and (C 8) into the boundary conditions (C 7a,b) and (C 7c,d)
gives a set of equations relating the unknown coefficients A′nm and a′nm to one another
and the boundary conditions. Solving these equations gives

A′m = (I −MmMm)
−1bm, am =−MmA′m, (C 9a,b)

where the vectors A′m and a′m contain the coefficients (A′1m,A
′

2m, . . .) and (a′1m, a
′

2m, . . .),
while the elements of the square matrix Mm are given by

Mns,m =−
n

n+ 1
1

ds+n+1

(
n+ s
n+m

)
. (C 10)
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A′n1 =−
∑

s cnsd−s

n cn0 cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 cn10 cn11 cn12 cn13 cn14 cn15

1 1
2 0 0 0 0 0 1

8 0 1
2 0 9

8 0 65
32 0 7

2 0

2 0 0 0 0 0 0 0 1
6 0 8

9 0 5
2 0 43

8 0 185
18

3 0 0 0 0 0 0 0 0 3
16 0 5

4 0 135
32 0 675

64 0

4 0 0 0 0 0 0 0 0 0 1
5 0 8

5 0 63
10 0 1797

100

5 0 0 0 0 0 0 0 0 0 0 5
24 0 35

18 0 35
4 0

6 0 0 0 0 0 0 0 0 0 0 0 3
14 0 16

7 0 81
7

7 0 0 0 0 0 0 0 0 0 0 0 0 7
32 0 21

8 0

TABLE 3. Coefficients of the multipole expansion centred at probe I for the
perpendicular microstructure f⊥1 .

a′n1 =−
∑

s cnsd−s

n cn0 cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 cn10 cn11 cn12 cn13 cn14 cn15

1 0 0 0 1
4 0 0 0 0 0 1

16 0 1
2 0 59

24 0 609
64

2 0 0 0 0 1
3 0 0 0 0 0 1

12 0 7
9 0 118

27 0

3 0 0 0 0 0 3
8 0 0 0 0 0 3

32 0 1 0 1207
192

4 0 0 0 0 0 0 2
5 0 0 0 0 0 1

10 0 6
5 0

5 0 0 0 0 0 0 0 5
12 0 0 0 0 0 5

48 0 25
18

6 0 0 0 0 0 0 0 0 3
7 0 0 0 0 0 3

28 0
7 0 0 0 0 0 0 0 0 0 7

16 0 0 0 0 0 7
64

TABLE 4. Coefficients of the multipole expansion centred at probe II for the
perpendicular microstructure f⊥1 .

The boundary conditions are described by the vectors b0 = {1/2, 0, 0, . . .} and
b1 = {−1/2, 0, 0 . . .}.

Inversion of the matrix in (C 9a,b) is carried out by truncating the infinite series
at a finite value n=N and solving the resulting equation for A′nm and a′nm. This gives
asymptotically correct answers, with errors that become negligible if N is large enough
(Cox, Thamwattana & Hill 2006). We solved (C 9a,b) while truncating the series at
N = 7, giving expressions for the microstructure that are accurate to O(d−15). Each of
the computed coefficients were then expanded as a Taylor series in 1/d, which are
reported to in tables 1, 2, 3 and 4.

The linear coupling coefficients of R̂11 and R̂12 may be determined by substituting
the parallel and perpendicular disturbance function (C 5) and (C 6) into the force
equation (3.17), giving

R‖11(d) = 6A′10(d)− 2, R‖12(d) = −6a′10(d),
R⊥11(d) = −6A′11(d)− 2, R⊥12(d) = −6a′11(d),

(C 11)
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after invoking the boundary conditions (C 7a,b) and (C 7c,d). The use of the twin-
multipole expansion provides an accurate method for the analytical computation of the
scalar couplings between drag force and probe velocity in the linear-response regime
for all separations d> 2.

Analytical results for the scalar couplings, valid for d > 2, are reported here to
O(d−15):

R‖11 = 1+
3
d6
+

9
d8
+

18
d10
+

33
d12
+

72
d14
+O

(
1

d16

)
, (C 12)

R‖12 = −
3
d3
−

3
d9
−

18
d11
−

72
d13
−

243
d15
+O

(
1

d17

)
, (C 13)

R⊥11 = 1+
3

4d6
+

3
d8
+

27
4d10
+

195
16d12

+
21
d14
+O

(
1

d16

)
, (C 14)

R⊥12 =
3

2d3
+

3
8d9
+

3
d11
+

59
4d13
+

1827
32d15

+O
(

1
d17

)
. (C 15)

These results are consistent with the results of Krüger & Rauscher (2007), who
computed the O(Pe) non-equilibrium forces between probes in the tandem and
side-by-side orientations to O(d−3). For separations d < 2, the coupling coefficients
by solving (4.2) numerically through finite-difference methods (cf. appendix E). The
resulting coupling coefficients were fit to a fourth-order polynomial in the probe
separations distance d:

R‖11 = 0.5773d4
− 2.7391d3

+ 5.1323d2
− 4.3946d+ 2.0324, (C 16)

R‖12 = −0.5730d4
+ 2.7735d3

− 5.2177d2
+ 4.4971d− 1.5351, (C 17)

R⊥11 = −0.1097d4
+ 0.4781d3

− 0.8554d2
+ 1.1442d+ 0.1126, (C 18)

R⊥12 = −0.1113d4
+ 0.5158d3

− 0.9442d2
+ 0.9061d− 0.1723. (C 19)

Appendix D. Computation of the interactive resistance tensor T̂ 1

Computation of the third-order tensor T̂ 1 coupling the interactive force to weakly
nonlinear motion requires computation of the O(Pe2) disturbance function f2. As
discussed in § 4.1, f2 ∼ ÛÛ, meaning we may obtain an angular decomposition for f2
in a manner similar to the decomposition of f1:

f2(r | d; α)= cos2 αf ‖2 (r | d)+ sin2 αf⊥2 (r | d)+ sin 2αf×2 (r | d). (D 1)

The resulting disturbance function, f ‖2 , f⊥2 , and f×2 , are associated with angular variation
in the structure arising from motion parallel, perpendicular and diagonal to the probe
line of centres, respectively, and may be directly related to the scalar couplings T‖,
T⊥, and T×.

Computation of the third-order coupling tensor T̂ 1 could proceed as before by
obtaining the twin-multipole expansion of f2. However, this method proves to be
algebraically intractable. To circumvent this issue, we developed a method based on
Green’s second identity that allows for the computation of T̂ 1 without computing
f2. The O(Pe2) disturbance is divided into its homogenous and particular solution:
f2= f h

2 + f p
2 . The homogenous solution ( f h

2 ) is a harmonic function, and the particular
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solution is given by f p
2 =−r · Ûf1/2, where r is the position vector centred at probe I.

Substituting this expression for f2 into integral for the osmotic force (cf. (3.17)) and
using the definition for T̂ 1 then gives

T̂ 1 : ÛÛ=
3

2π

∫ (
f h
2 (r | d; α)−

1
2

r · Ûf1(r | d; α)
)

n1 dSI. (D 2)

The dependence of (D 2) on f h
2 may be removed by relating it to the O(Pe)

microstructure through Green’s second identity, which holds for any two harmonic
functions: ∫

f h
2 n · ∇f̃1(1) dS=

∫
f̃1(1)n · ∇f h

2 dS. (D 3)

Here, the surface integral is evaluated over both SI and SII. The tilde in f̃1(1)

emphasizes that this expression holds true for all values of f̃1(1), meaning the
velocity vector associated with f̃1(1) need not be oriented in the same direction as that
associated with f h

2 . From (C 4a) and (C 4b), it can be seen that n · ∇f̃1(1) =−n · Ũ on
SI and n · ∇f1(1) = 0 on SII, where Ũ is the dimensionless probe velocity associated
with f̃1(1). Substituting these boundary conditions into (D 3) gives

−Ũ ·
∫

f h
2 n1 dSII =

∫
f̃1(1)n1 · ∇f h

2 dSI +

∫
f̃1(1)n2 · ∇f h

2 dSII. (D 4)

The resulting expression may be substituted into (D 2), giving

Ũ · T̂ 1 : ÛÛ = −
3

4π

∫
n1 · Ûf1 f̃1(1) + n1n1 : ÛÛf̃1(1) − n1n1 : ÛŨf1 dSI

−
3

4π

∫
n2 · Ûf1 f̃1(1) + n2(n2 + d) : ÛÛf̃1(1) dSII. (D 5)

Here, we have simplified the right-hand side of (D 4) using (4.3b), and have used
r|SII = n2 + d. The resulting expression depends only on the O(Pe) microstructure
functions f1 and f̃1(1). From (C 2), it is seen that f1 is obtained from a linear
combination of the functions f ‖1 = f ‖1(1)+ f ‖1(2) and f⊥1 = f⊥1(1)+ f⊥1(2). Using the results of
appendix C, it can be shown that

f ‖1 =
∞∑

n=1

An0
1

rn+1
Pn(cos θ)+ an0

1
r′n+1 Pn(cos θ ′), (D 6)

f⊥1 =
∞∑

n=1

[
An1

1
rn+1

P1
n(cos θ)+ an1

1
r′n+1 P1

n(cos θ ′)
]

cos(φ), (D 7)

where the coefficients Anm and anm may be obtained from the symmetry relations

Anm = A′nm − (−1)ma′nm, anm = a′nm − (−1)mA′nm. (D 8a,b)

Thus, computation of f2 is not necessary to compute T̂ 1; all that is needed are the
O(Pe) functions computed in appendix C.
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The individual scalar components of T̂ 1 may be computed through appropriate
choices of Û and Ũ. In (D 5), Ũ gives the projection of the weakly nonlinear
interactive force in the Ũ direction. Thus, setting Ũ= ez gives the parallel interactive
force, while Ũ = ex gives the perpendicular interactive force. The coupling T‖ gives
the relation between the parallel interactive force and motion along the probes line
of centres. Thus, it may be found by choosing f̃1(1) and f1 such that Ũ= Û= ez:

T‖ = −
3

4π

∫
n1 · ezf

‖

1(1)f
‖

1(1) dSI

−
3

4π

∫
n2 · ezf

‖

1(1)f
‖

1(1) + n2(2n2 + d) : ezezf
‖

1(1) dSII, (D 9)

where (D 8a,b) has been used to simplify. Keeping f̃1(1) the same and choosing f1 such
that Û= ex gives

T⊥ = −
3

4π

∫
n1 · exf⊥1 f ‖1(1) + n1n1 : exexf

‖

1(1) − n1n1 : exezf⊥1 dSI

−
3

4π

∫
n2 · exf⊥1 f ‖1(1) + n2n2 : exexf

‖

1(1) dSII, (D 10)

where the results have again been simplified. The third coupling can be found by
setting Ũ to ex and Û to (ex + ez)/

√
2, giving

T× = −
3

8π

∫
n1 · (ezf⊥1(1)f

⊥

1(1) + exf
‖

1 f⊥1(1))+ ex · n1n1 · (ezf⊥1(1) − exf
‖

1 ) dSI

−
3

8π

∫
n2 · (ezf⊥1(1)f

⊥

1(1) + exf
‖

1 f⊥1(1))+ n2(3n2 + d) : ezexf⊥1(1) dSII. (D 11)

Analytical expressions, valid for d> 2, are reported here to O(d−15):

T‖ =
1

2d2
−

2
d4
+

1
d5
+

1
d7
+

1
2d8
−

1
d9
+

2
d10
−

5
d11
+

5
d12
−

8
d13
+

15
2d14

+
2

d15
+O

(
1

d16

)
, (D 12)

T⊥ = −
3

4d2
+

1
d4
−

9
8d5
−

1
d7
−

21
16d8

+
25

24d9
−

5
d10
+

147
32d11

−
295

24d12
+

21
4d13

−
13349
576d14

−
1261
96d15

+O
(

1
d16

)
, (D 13)

T× = −
1

2d2
+

1
d4
−

1
16d5

+
1

16d8
−

59
48d9

−
301

64d11
−

5
24d12

−
95

8d13

+
821

576d14
+O

(
1

d16

)
. (D 14)

For separations d < 2, the coupling coefficients by solving (4.3) numerically through
finite-difference methods (cf. appendix E). The resulting coupling coefficients were
again fit to a fourth-order polynomial in the probe separations distance d:

T‖ = −0.0692d4
+ 0.3762d3

− 0.8354d2
+ 0.7331d− 0.0039, (D 15)

T⊥ = −0.0508d4
+ 0.1919d3

− 0.5372d2
+ 0.5958d+ 0.0483, (D 16)

T× = 0.0393d4
− 0.1845d3

+ 0.3123d2
− 0.2813d+ 0.0881. (D 17)
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Appendix E. Numerical solution for arbitrary forcing strength
The analytical perturbation methods employed in the preceding section are only

valid for Pe � 1 and d > 2. For Pe & O(1) and for separations d < 2, numerical
methods are required. The Cartesian coordinate system describing probe geometry
(cf. figure 3) is transformed into a curvilinear coordinate system where the no-flux
surfaces of the probes coincide with coordinate isosurfaces. The nature of the required
coordinate system depends crucially on the probe separation distance d. When d< 2,
bath particles cannot fit directly between the two probes, and their excluded-volume
surfaces SI and SII overlap, forming a dumbbell-like shape. For d> 2, bath particles
may freely move between the probes, and the excluded-volume surfaces of the probes
take the form of non-overlapping spheres. This difference in geometry necessitates the
use of two different coordinate systems. The appropriate coordinate systems for the
solution of the Smoluchowski equation are then toroidal coordinates for d< 2, and
bispherical coordinates for d>2. Khair & Brady (2007) used these coordinate systems
to compute the forces exerted on two probes moving in the tandem orientation. Their
numerical method relied on mapping the advection-diffusion equation to the Helmholtz
equation. As this method leads to numerical difficulties for large values of Pe, we
use an alternative formulation.

The formulation of the Smoluchowski equation in toroidal and bispherical
coordinates is presented in the succeeding sections. For ease of readability, we
will define three scalar functions that appear often in the coordinate systems:

R= coshµ− cos η, A= 1− coshµ cos η, B= sinhµ sin η. (E 1a−c)

E.1. Toroidal coordinates d< 2
The toroidal coordinate system is defined by the relations

x= c
sinhµ cos φ

coshµ− cos η
, y= c

sinhµ sin φ
coshµ− cos η

, z= c
sin η

coshµ− cos η
, (E 2a−c)

where c is a constant scale factor setting the geometry of the coordinate systems, and
the three coordinates span 0 6 µ <∞, −π 6 η 6 π and 0 6 φ 6 2π. Surfaces of
constant η are overlapping spheres given by x2

+ y2
+ (z − ac cot η)2 = a2c2/ sin2 η,

meaning the excluded-volume surfaces of the probes SI and SII can be described by
the isosurfaces η=±η0. As SI and SII are located at z=±d/2 and have a radius of
unity, the coordinate isosurfaces are given by η0 = cos−1(d/2) with the scale factor
c=
√

4− d2/2.
We make the substitution f = c

√
Rh in (3.10a), which has the advantage of

automatically satisfying the far-field boundary conditions (3.10c), as R→ 0 as r→∞.
With this substitution, equations (3.10a) and (3.10b) become

∂2h
∂µ2
+
∂2h
∂η2
+ cothµ

∂h
∂η
+ csch2µ

∂2h
∂φ2
+

1
4

h

+
cPe sin α cos φ

R2

[
−B

∂g
∂η
+ A

∂g
∂µ
− Rcschµ

∂h
∂φ
−

1
2

sinhµ cos ηh
]

+
cPe cos α

R2

[
−A

∂g
∂η
− B

∂g
∂µ
−

1
2

coshµ sin ηh
]
= 0, (E 3)
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(
∂h
∂η
+

1
2

sin η
R

h
)∣∣∣∣

η=±η0

=

(
A cos α

R5/2
+

B cos φ sin α
R5/2

)
(1+ cPe

√
Rh)|η=±η0 . (E 4)

The equations are discretized via a second-order finite-difference scheme, and the
resulting equations are solved iteratively using the MATLAB program gmres with
incomplete LU prefactorization. The µ coordinate, which lies in µ ∈ [0, ∞) is
restricted to µ ∈ [0, µ∞], where µ∞ is chosen such that the numerical results are
equivalent to choosing µ=∞. Typically, µ∞ = 10 is sufficient.

For Pe � 1, a grid that is evenly spaced in η, µ and φ is sufficient to ensure
accurate numerical solutions of the Smoluchowski equation. However, when Pe� 1,
the numerical method must both resolve an O(Pe−1) thin boundary layer in the
upstream region and an O(Pe) long trailing wake. To reduce the number of grid
points necessary, coordinate transformations are introduced. When the probes are near
the side-by-side orientation (α = π/2), the transforms of Khair & Brady (2007) are
used:

η= η0 coth a tanh
(

aλ
2

)
(E 5)

and

µ= exp(log(µ∞ + 1)ξ)− 1, (E 6)

where −1 6 λ6 1, 0 6 ξ 6 1 and a is an adjustable parameter. These transformations
increase the number of grid points in the boundary layer and increase the density of
grid points near the point where the excluded-volume surfaces of the probes overlap.
Increasing a increases the density of grid points in the boundary layer. When the
probes are near the tandem orientation (α= 0), it is desirable to increase the number
of grid points near the z axis to resolve interactions between the wake of the leading
probe and the no-flux surface of the trailing probe. To this end, the transform

µ=µ∞
sinh(nξ)

sinh n
(E 7)

is employed, with n as an adjustable parameter. Increasing the value of n increases
the number of grid points near the wake region.

E.2. Bispherical coordinates d> 2
The bispherical coordinate systems is defined as

x= c
sin η cos φ

coshµ− cos η
, y= c

sin η sin φ
coshµ− cos η

, z= c
sinhµ

coshµ− cos η
, (E 8a−c)

where c is a scale factor and the three coordinates span −∞<µ<∞, 06 η6π and
0 6 φ 6 2π. Surfaces of constant µ are spheres given by x2

+ y2
+ (z− c coth µ)2 =

c2/ sinh2 µ. Thus, the excluded-volume surfaces of the probes are given by µ=±µ0,
where µ= cosh−1(d/2) and the scale factor is c=

√
d2 − 4/2.
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We again make the substitution f = c
√

Rh and (3.10a) and (3.10b) become

∂2h
∂µ2
+
∂2h
∂η2
+ cot η

∂h
∂µ
+ csc2 η

∂2h
∂φ2
−

1
4

h

+
Pe sin α cos φ

R2

[
−B

∂g
∂µ
− A

∂g
∂η
− R csc η

∂h
∂φ
−

1
2

coshµ sin ηh
]

+
cPe cos α

R2

[
A
∂g
∂µ
− B

∂g
∂η
−

1
2

sinhµ cos ηh
]
= 0, (E 9)

(
∂h
∂µ
+

1
2

sinhµ
R

h
)∣∣∣∣

µ=±µ0

=

(
−

A cos α
R5/2

+
B cos φ sin α

R5/2

)
(1+ cPe

√
Rh)|µ=±µ0 .

(E 10)
In bispherical coordinates, equation (E 5) is used to transform the µ coordinate,
increasing the number of grid points in the boundary layer. For probes near the
side-by-side orientation, a grid that is equally spaced in η is sufficient. However, for
probes near the tandem orientation, an increase in grid point density in the wake is
obtained by using (E 7) to transform η.
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